问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

张齐艳&沈洋教授破解高温储能难题

创作时间:
2025-01-22 05:10:40
作者:
@小白创作中心

张齐艳&沈洋教授破解高温储能难题

高温储能技术是现代电子设备和电力系统中能量存储和转换的关键技术。然而,现有的聚合物介电材料工作温度较低,导致薄膜电容器在电动汽车、航空航天和地下油气勘探等新兴高温环境中的电力电子应用中无法稳定运行。例如,电动汽车中的近发动机温度可超过120℃,而目前用于电动汽车功率逆变器的双轴取向聚丙烯(BOPP)薄膜电容器的工作温度低于105℃。因此,需要采用冷却系统将工作温度从120℃以上降至约70℃,这增加了额外的重量、体积和能耗。

为了解决这一瓶颈问题,深圳大学电子与信息工程学院张齐艳助理教授与宾夕法尼亚州立大学章启明教授合作提出并制备了一种具有优异高温电容储能性能的低熵非晶态介电聚合物。该低熵非晶态聚合物由高玻璃化转变温度的聚(2,6-二甲基-1,4-苯撑氧化物)(PPO)和聚苯乙烯(PS)分子级共混而成,在高温和高电场下表现出优异的电容性能。材料设计原理是利用PS的苯环与PPO的苯环之间的强范德华力,在分子水平上“拉伸”主链,从而显著降低非晶态聚合物的分子构象熵,形成随机取向但高度紧密堆积的延展聚合物链,通过深能级局部态抑制电荷传输。研究结果表明,该低熵非晶态介电聚合物在150℃下表现出5.5 J/cm³的放电能量密度和超过90%的充放电效率,性能优于现有的介电聚合物。此外,与其他方法相比,该薄膜加工工艺(即聚合物共混)更简单、直接且成本低,因此该方法为高性能和高质量聚合物薄膜的量产奠定了基础,并在高温薄膜电容器中展现出广泛的应用潜力。

与此同时,清华大学材料学院沈洋教授课题组在高温储能聚合物电介质领域也取得了重要进展。他们将两种带有不同官能团(环己烷和砜基)的小分子作为功能基元,合成了一种兼具宽带隙、大偶极矩和高结构稳定性的双官能团偶极玻璃聚合物,并制备了双官能团偶极玻璃聚合物-商业化聚酰亚胺共混电介质。双官能团偶极玻璃的分子量超过了30000 g mol-1,因此在较高含量下(~10wt%)依然可以保持聚合物电介质在热场、力场下的结构稳定性。双官能团偶极玻璃上的功能基元可以分别提升电介质的介电常数和击穿场强,而偶极玻璃的非线性构型和大分子量可以通过调控极性基团周围的自由体积分布和维持热稳定性进一步增强其效果。最终,该工作中的聚合物电介质在150°C和200°C下分别获得了8.34 J cm-3和6.21 J cm-3的放电能量密度(充放电效率为90%),并在200°C,600MV m-1的严苛环境下实现了五万次稳定充放电循环。

这些突破性研究成果为高温储能技术的发展提供了新的解决方案,有望在电动汽车、航空航天等高温环境下的电力电子应用中发挥重要作用。未来,随着研究的深入和技术的不断进步,高温储能技术将展现出更加广阔的应用前景。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号