问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

130万倍速提升!机器学习助力AIE微观机制研究

创作时间:
2025-01-22 09:20:51
作者:
@小白创作中心

130万倍速提升!机器学习助力AIE微观机制研究

近期,深圳职业技术大学李竞白副教授课题组与美国东北大学史蒂文·洛佩斯(Steven Lopez)教授合作,开发了一种多尺度机器学习光动力学模拟的方法。该研究在国际知名期刊《自然·通讯》上发表,为理解聚集诱导发光(AIE)现象提供了新的视角。

AI加速分子动力学计算

研究团队利用深度学习神经网络,成功加速了分子聚集体激发态动力学的计算模拟过程。与传统基于量子力学计算的非绝热动力学方法相比,新方法的速度最高可提升130万倍。这一突破性进展不仅大幅缩短了计算时间,还保持了极高的预测精度。


图:李竞白副教授(来源:李竞白)

揭示AIE现象的微观机制

聚集诱导发光(AIE)是一种独特的光物理现象,指某些分子在聚集状态下比在溶液中更容易发光。这一现象在光电材料、生物成像等领域具有广泛的应用前景。然而,AIE现象的微观机制一直缺乏清晰的解释。

研究团队开发的新方法能够精准预测AIE分子的荧光增强系数,并与实验结果保持一致。更重要的是,该方法在原子分辨级别上揭示了AIE现象的微观机制:分子聚集体通过限制分子内振动,抑制非辐射跃迁,从而引发AIE现象。

为材料设计提供新思路

这项研究不仅加深了对传统AIE机制的理解,更为未来更理性地设计AIE材料提供了充分的依据和指导。通过分析激发态分子结构演化,研究人员展示了对AIE现象的直观认识,为相关领域的研究开辟了新的方向。

背景信息:AIE现象的发现与应用

AIE现象最早由香港科技大学唐本忠院士于2001年发现。经过二十多年的发展,AIE材料已经在多个领域展现出巨大的应用潜力,包括:

  • 光电材料:用于制备高性能的有机发光二极管(OLED)和激光器
  • 生物成像:作为荧光探针,用于细胞成像和疾病诊断
  • 环境监测:用于检测水体中的重金属离子和有机污染物

随着对AIE机制理解的不断深入,未来有望开发出更多高性能的AIE材料,为相关领域的技术进步提供有力支持。

本文原文来自搜狐科技

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号