MATLAB实现LSTM时间序列预测
创作时间:
作者:
@小白创作中心
MATLAB实现LSTM时间序列预测
引用
CSDN
1.
https://blog.csdn.net/weixin_58438203/article/details/136085238
LSTM(长短期记忆网络)是一种特殊的循环神经网络(RNN),特别适合处理和预测时间序列数据。它通过引入输入门、遗忘门和输出门,有效解决了传统RNN在处理长序列数据时容易出现的梯度消失和梯度爆炸问题。本文将详细介绍如何使用MATLAB实现LSTM进行时间序列预测,并通过具体代码和实例展示预测过程和结果。
LSTM模型可以在一定程度上学习和预测非平稳的时间序列,其具有强大的记忆和非线性建模能力,可以捕捉到时间序列中的复杂模式和趋势[4]。在这种情况下,LSTM模型可能会自动学习到时间序列的非平稳性,并在预测中进行适当的调整。其作为循环神经网络(RNN)的特殊形式,继承了循环神经网络的优点。首先,利用记忆机制,可以有效提取时间序列数据的时间依赖性。其次,在模型训练时,学习到的权重参数在时间步骤之间是共享的,故对长时间序列的训练具有一定的可拓展性,而且比起传统的神经网络模型,它所需参数数量较少,降低了模型的复杂度。最后,它也具有LSTM神经网络特有的优势,对训练时权重变化不稳定而产生梯度消失和梯度爆炸问题有着不错的改善效果。LSTM单元的主要结构由3个门控制器和记忆细胞组成。其中,输入门控制特征的流向信息,输出门控制特征的输出信息,遗忘门控制特征的去除与遗忘,记忆细胞负责存储细胞状态信息。通过不同功能门的控制,从而解决RNN存在的长期依赖问题[5]。LSTM单元内的计算过程为:
下面是使用MATLAB实现LSTM时间序列预测的具体代码:
clc
clear
load('data.mat')
data=RTS'
%% 序列的前485个用于训练,后10个用于验证神经网络,然后往后预测10个数据。
dataTrain = data(1:485); %定义训练集
dataTest = data(486:495); %该数据是用来在最后与预测值进行对比的
%% 数据预处理
mu = mean(dataTrain); %求均值
sig = std(dataTrain); %求均差
dataTrainStandardized = (dataTrain - mu) / sig;
%% 输入的每个时间步,LSTM网络学习预测下一个时间步,这里交错一个时间步效果最好。
XTrain = dataTrainStandardized(1:end-1);
YTrain = dataTrainStandardized(2:end);
%% 一维特征lstm网络训练
numFeatures = 1; %特征为一维
numResponses = 1; %输出也是一维
numHiddenUnits = 200; %创建LSTM回归网络,指定LSTM层的隐含单元个数200。可调
layers = [ ...
sequenceInputLayer(numFeatures) %输入层
lstmLayer(numHiddenUnits) % lstm层,如果是构建多层的LSTM模型,可以修改。
fullyConnectedLayer(numResponses) %为全连接层,是输出的维数。
regressionLayer]; %其计算回归问题的半均方误差模块 。即说明这不是在进行分类问题。
%指定训练选项,求解器设置为adam, 1000轮训练。
%梯度阈值设置为 1。指定初始学习率 0.01,在 125 轮训练后通过乘以因子 0.2 来降低学习率。
options = trainingOptions('adam', ...
'MaxEpochs',1000, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.01, ...
'LearnRateSchedule','piecewise', ...%每当经过一定数量的时期时,学习率就会乘以一个系数。
'LearnRateDropPeriod',400, ... %乘法之间的纪元数由“ LearnRateDropPeriod”控制。可调
'LearnRateDropFactor',0.15, ... %乘法因子由参“ LearnRateDropFactor”控制,可调
'Verbose',0, ... %如果将其设置为true,则有关训练进度的信息将被打印到命令窗口中。默认值为true。
'Plots','training-progress'); %构建曲线图 将'training-progress'替换为none
net = trainNetwork(XTrain,YTrain,layers,options);
net = predictAndUpdateState(net,XTrain); %将新的XTrain数据用在网络上进行初始化网络状态
[net,YPred] = predictAndUpdateState(net,YTrain(end)); %用训练的最后一步来进行预测第一个预测值,给定一个初始值。这是用预测值更新网络状态特有的。
%% 进行用于验证神经网络的数据预测(用预测值更新网络状态)
for i = 2:20 %从第二步开始,这里进行20次单步预测(10为用于验证的预测值,10为往后预测的值。一共20个)
[net,YPred(:,i)] = predictAndUpdateState(net,YPred(:,i-1),'ExecutionEnvironment','cpu'); %predictAndUpdateState函数是一次预测一个值并更新网络状态
end
%% 验证神经网络
YPred = sig*YPred + mu; %使用先前计算的参数对预测去标准化。
rmse = sqrt(mean((YPred(1:10)-dataTest).^2)) ; %计算均方根误差 (RMSE)。
subplot(2,1,1)
plot(dataTrain(1:end)) %先画出前面485个数据,是训练数据。
hold on
idx = 486:(485+20); %为横坐标
plot(idx,YPred(1:20),'.-') %显示预测值
hold off
xlabel("Time")
ylabel("Case")
title("Forecast")
legend(["Observed" "Forecast"])
subplot(2,1,2)
plot(data)
xlabel("Time")
ylabel("Case")
title("Dataset")
%% 继续往后预测2023年的数据
figure(2)
idx = 486:(485+20); %为横坐标
plot(idx,YPred(1:20),'.-') %显示预测值
hold off
net = resetState(net);
MATLAB运行结果如下:
热门推荐
企业如何提升行业市场洞察能力?
汽车数字化转型生产制造行业市场发展机会分析
中国香港卫生局警告:电子烟成毒品滥用新工具
群晖NAS教程:如何安装DSM操作系统?
这种气球千万不要买!为什么?
氦气球与氢气球的区别:安全使用指南
海带可以生吃吗?食用海带的安全指南是什么?
荣耀换帅!赵明离职,前华为悍将接棒
【独家】荣耀独立后管理层去向:万飚或任董事长,赵明或任CEO
如何利用数据分析,提升自媒体运营效率?
铝合金半导体散热器型材:优势特点与应用领域
取保候审会留案底吗?取保候审期限详解
旅游行李必备清单:从证件到洗漱用品,一文详解出行必备物品
困在布拉格的卡夫卡,却成为所有现代人的嘴替
楚国迁了那么多都城,为什么只有“郢都”成为楚人的精神象征?
《红楼梦》:古典时代的艺术高峰
PPT制作流程,从构思到呈现的全方位指南
掌握复合肥的智慧:科学施肥策略与实践
五一孟州游攻略,整理在此!
生病要忌口,不吃“发物”!然而,发物是何物?
锌在早产儿健康中的关键作用:缺乏风险与补充策略
春招毕业生签订劳动合同的注意事项
脊椎侧弯:症状、治疗方法及注意事项
麻仁润肠丸的正确用法
AI智能客服操作手册:提升客户满意度的十大技巧
乙二醇和酒精的区别是什么?它们在工业应用中有何不同?
养殖的牛蛙有寄生虫么
动态流量卡需要实名认证吗?
由盈转亏、净利下滑16478%!易华录正经历业务转型阵痛
什么是质粒拷贝数?如何降低和提高质粒拷贝数?