MATLAB实现LSTM时间序列预测
创作时间:
作者:
@小白创作中心
MATLAB实现LSTM时间序列预测
引用
CSDN
1.
https://blog.csdn.net/weixin_58438203/article/details/136085238
LSTM(长短期记忆网络)是一种特殊的循环神经网络(RNN),特别适合处理和预测时间序列数据。它通过引入输入门、遗忘门和输出门,有效解决了传统RNN在处理长序列数据时容易出现的梯度消失和梯度爆炸问题。本文将详细介绍如何使用MATLAB实现LSTM进行时间序列预测,并通过具体代码和实例展示预测过程和结果。
LSTM模型可以在一定程度上学习和预测非平稳的时间序列,其具有强大的记忆和非线性建模能力,可以捕捉到时间序列中的复杂模式和趋势[4]。在这种情况下,LSTM模型可能会自动学习到时间序列的非平稳性,并在预测中进行适当的调整。其作为循环神经网络(RNN)的特殊形式,继承了循环神经网络的优点。首先,利用记忆机制,可以有效提取时间序列数据的时间依赖性。其次,在模型训练时,学习到的权重参数在时间步骤之间是共享的,故对长时间序列的训练具有一定的可拓展性,而且比起传统的神经网络模型,它所需参数数量较少,降低了模型的复杂度。最后,它也具有LSTM神经网络特有的优势,对训练时权重变化不稳定而产生梯度消失和梯度爆炸问题有着不错的改善效果。LSTM单元的主要结构由3个门控制器和记忆细胞组成。其中,输入门控制特征的流向信息,输出门控制特征的输出信息,遗忘门控制特征的去除与遗忘,记忆细胞负责存储细胞状态信息。通过不同功能门的控制,从而解决RNN存在的长期依赖问题[5]。LSTM单元内的计算过程为:
下面是使用MATLAB实现LSTM时间序列预测的具体代码:
clc
clear
load('data.mat')
data=RTS'
%% 序列的前485个用于训练,后10个用于验证神经网络,然后往后预测10个数据。
dataTrain = data(1:485); %定义训练集
dataTest = data(486:495); %该数据是用来在最后与预测值进行对比的
%% 数据预处理
mu = mean(dataTrain); %求均值
sig = std(dataTrain); %求均差
dataTrainStandardized = (dataTrain - mu) / sig;
%% 输入的每个时间步,LSTM网络学习预测下一个时间步,这里交错一个时间步效果最好。
XTrain = dataTrainStandardized(1:end-1);
YTrain = dataTrainStandardized(2:end);
%% 一维特征lstm网络训练
numFeatures = 1; %特征为一维
numResponses = 1; %输出也是一维
numHiddenUnits = 200; %创建LSTM回归网络,指定LSTM层的隐含单元个数200。可调
layers = [ ...
sequenceInputLayer(numFeatures) %输入层
lstmLayer(numHiddenUnits) % lstm层,如果是构建多层的LSTM模型,可以修改。
fullyConnectedLayer(numResponses) %为全连接层,是输出的维数。
regressionLayer]; %其计算回归问题的半均方误差模块 。即说明这不是在进行分类问题。
%指定训练选项,求解器设置为adam, 1000轮训练。
%梯度阈值设置为 1。指定初始学习率 0.01,在 125 轮训练后通过乘以因子 0.2 来降低学习率。
options = trainingOptions('adam', ...
'MaxEpochs',1000, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.01, ...
'LearnRateSchedule','piecewise', ...%每当经过一定数量的时期时,学习率就会乘以一个系数。
'LearnRateDropPeriod',400, ... %乘法之间的纪元数由“ LearnRateDropPeriod”控制。可调
'LearnRateDropFactor',0.15, ... %乘法因子由参“ LearnRateDropFactor”控制,可调
'Verbose',0, ... %如果将其设置为true,则有关训练进度的信息将被打印到命令窗口中。默认值为true。
'Plots','training-progress'); %构建曲线图 将'training-progress'替换为none
net = trainNetwork(XTrain,YTrain,layers,options);
net = predictAndUpdateState(net,XTrain); %将新的XTrain数据用在网络上进行初始化网络状态
[net,YPred] = predictAndUpdateState(net,YTrain(end)); %用训练的最后一步来进行预测第一个预测值,给定一个初始值。这是用预测值更新网络状态特有的。
%% 进行用于验证神经网络的数据预测(用预测值更新网络状态)
for i = 2:20 %从第二步开始,这里进行20次单步预测(10为用于验证的预测值,10为往后预测的值。一共20个)
[net,YPred(:,i)] = predictAndUpdateState(net,YPred(:,i-1),'ExecutionEnvironment','cpu'); %predictAndUpdateState函数是一次预测一个值并更新网络状态
end
%% 验证神经网络
YPred = sig*YPred + mu; %使用先前计算的参数对预测去标准化。
rmse = sqrt(mean((YPred(1:10)-dataTest).^2)) ; %计算均方根误差 (RMSE)。
subplot(2,1,1)
plot(dataTrain(1:end)) %先画出前面485个数据,是训练数据。
hold on
idx = 486:(485+20); %为横坐标
plot(idx,YPred(1:20),'.-') %显示预测值
hold off
xlabel("Time")
ylabel("Case")
title("Forecast")
legend(["Observed" "Forecast"])
subplot(2,1,2)
plot(data)
xlabel("Time")
ylabel("Case")
title("Dataset")
%% 继续往后预测2023年的数据
figure(2)
idx = 486:(485+20); %为横坐标
plot(idx,YPred(1:20),'.-') %显示预测值
hold off
net = resetState(net);
MATLAB运行结果如下:
热门推荐
幽门螺杆菌治疗新突破:北大一院发布二联疗法
《中华消化杂志》推荐:幽门螺旋杆菌的家庭管理指南
没驾照也能骑电动车?这3种情况让你安心上路!
电动车新规!春节过后,4类车上路不罚、不扣,3类严查上路!
襄阳市妇幼保健院:给产妇不一样的分娩体验
双十一客服团队高效协作指南
客服如何在高压下保持微笑?
电商客服技能升级,助你职场C位出道!
双十一客服沟通秘籍大揭秘!
如何防治颈腰椎疾病?(年纪轻轻 也要小心这些疾病)
2025年自我重启最快的方式:《掌控习惯》
抬头望望天,别让手机绑架了您的小脖几!
古典诗词的35种艺术手法,值得收藏!(学会了,你也会写诗)
黄仁勋的管理秘诀:如何打造一个3.3万亿美元的科技帝国
大棚西红柿种植技术与管理(高产优质的大棚西红柿种植实践)
西红柿病害图片及防治
聚焦农业科技创新:植物工厂种出“智慧菜”
气温回升,大棚番茄生产管理怎么做?
“耳石症” VS “颈性眩晕”
扭动脖子“咔咔响”,就一定是颈椎病?
唐代边塞诗里的那些经典文化意象
学校选购多媒体投影机的实用指南
探秘古人的"岁时"庆典:那些独特的节日风俗
历史上最悲惨的南宋皇陵,曾是江南最大皇陵群,而今只剩遗址
宋朝知识大全
松赞干布病逝后,文成公主的选择令人动容
探索广州魅力,生活服务的全方位指南
松赞干布去世后的权力之争:贡日贡杰和尚结赞谁更有资格继承王位?
吐蕃王朝的转折:松赞干布去世后的应对与挑战
云南铜业:绿色冶炼标杆,持续分红助力可持续发展