深入浅出带你了解磁共振成像(MRI)基本原理
深入浅出带你了解磁共振成像(MRI)基本原理
磁共振成像(MRI)是一种常见的医疗影像技术,广泛应用于临床诊断。但很多人对"核磁共振"这个名字感到困惑,担心其安全性。本文将深入浅出地介绍MRI的基本原理,帮助读者消除疑虑,更好地理解这项技术。
一、MRI的命名误解
当我们去医院做核磁共振检查时,可能会好奇:为什么叫"核磁共振"?这个"核"对人体有害吗?
实际上,这里的"核"指的是"原子核",确实与原子核有关,但与核裂变、核聚变等能量放射无关。MRI是利用人体组织中某种原子核的核磁共振现象,将所得射频信号经过计算机处理,重构出人体某一层面的图像的诊断技术。
二、"核"和"磁"
人体是由原子构成的,原子由电子和原子核组成,原子核包括质子和中子。原子核像地球一样可以围绕着中轴进行自我旋转,人体中水分含量最多,因此大脑中的氢质子会自旋。
图1. 图片来源于网络
通常情况下,每个质子自旋均会产生一个小的磁场,但呈随机无序排列,各方向的磁性相互抵消,因此人体整体不表现磁性。但当一个人进入核磁共振扫描机器里,这些质子就处在了扫描机所产生的强磁场中。这些氢原子仍按自己的频率震动,但方向为与外界磁场保持一致,整体上会表现出磁性。
这就好比学校做广播体操,同学们一开始是随机排列的,但是一旦听到广播体操声响起,同学们都会自觉的排列整齐,朝同一个方向齐刷刷站好。此时,质子兼顾自旋和指向磁场方向或反方向的两种运动,综合起来看就类似于小时候玩的陀螺,称之为进动。
因此,磁共振成像系统中很重要的一个组成部分就是磁体系统,它的主要作用是提供一个稳定的、均匀的空间磁场环境。根据磁场强度的大小,可以把磁共振设备分为低场、中场、高场及超高场。磁场的单位是特斯拉(Tesla),是以一位传奇的物理学家尼古拉·特斯拉的名字命名的。
磁场强度小于0.5T的磁共振设备被叫做低场磁共振
磁场强度大于0.5T小于1.0T的磁共振设备叫做中场磁共振
磁场强度大于1.0T小于2.0T的磁共振就是高场磁共振
磁场强度大于2.0T的磁共振是超高场磁共振,包括临床和科研常用的3.0T和7.0T
三、"共振"
前面我们提到,在外加磁场后,体内的质子进动而产生磁矢量。平衡状态下,大部分的质子方向和外加磁场方向一致(即纵向磁化),而由于相位不同,宏观上只有纵向磁化产生,而无横向磁化产生。但由于和外加磁场方向一致不能被直接测量,我们如果想要获得这个信号,就需要扰乱它。
这就提到磁共振系统第二个重要组成部分——射频系统,它的主要作用是发射能够激发成像区域的射频脉冲。当我们加入的射频脉冲的频率和质子进动频率一致时,就会发生能量的传递,低能的质子获得能量进入高能的状态,这便是核磁共振。
加入了射频脉冲之后,产生的第一个影响是能量的传递,获得能量的质子会从低能级(磁场方向指向上)跃迁至高能状态(磁场方向指向下),纵向磁场强度随之不断减小。第二个影响是由于频率一致,所有吸收能量的质子会相互吸引靠拢,产生相同的相位,横向磁场强度随之不断增大。
四、"成像"
那么,射频脉冲关闭后发生了什么呢?当射频脉冲消失后,这些共振的氢原子会慢慢恢复到原来的方向和幅度,这个过程称之为"弛豫"。
弛豫分为横向弛豫和纵向弛豫。横向弛豫也称T2弛豫,即横向磁化逐渐减少的过程,横向磁化从最大值减少了63%所花费的时间为T2;纵向弛豫也称为T1弛豫,即纵向磁化逐渐恢复的过程,纵向磁化恢复到平衡状态强度的63%所需的时间为T1。弛豫时间与质子密度有关,不同组织的T1和T2值有很大的差异。
简单来说,在恢复的过程中,被激发的质子释放的能量,即磁共振信号被计算机所接收。对于T1像,计算机接收的是从0到63%的信号,时间越长,信号越弱。而T2像是从100%到37%的信号,所以时间越长,信号越强。
最终按照强度转换为黑白灰阶,从而画出人体图像。信号越强,图像越亮;信号越弱,图像越暗。比如,大家可以记住水为长T1长T2,脂肪为短T1短T2,如下图所示。T1像中的脑脊液为黑色,而T2像中脑脊液为白色。通常,T1观察解剖结构较好,T2观察组织病变较好。