动态规划——斐波那契数列模型问题详解
创作时间:
作者:
@小白创作中心
动态规划——斐波那契数列模型问题详解
引用
CSDN
1.
https://m.blog.csdn.net/Dirty_artist/article/details/145462036
动态规划是算法领域的重要概念,广泛应用于各种问题的求解中。本文通过四个具体的LeetCode题目(泰波那契数、三步问题、最小花费爬楼梯、解码方法)来阐述动态规划的原理和实现方法。每个题目都包含了算法原理、代码实现的详细讲解,内容系统且深入。
1137. 第 N 个泰波那契数
算法原理
- 状态表示: 根据题目要求可得出
- 状态转移方程: 也是根据题目得出
dp[i] 依赖前三个状态
dp[i] = dp[i-1] + dp[i-2] + dp[i-3] - 初始化: 保证填表不越界,根据题目可以得出
dp[0] = 0; dp[1] = dp[2] = 1; - 填表顺序: 根据前面的状态,计算当前状态
从左向右 - 返回值: dp[i]
代码实现
class Solution {
public:
int tribonacci(int n)
{
if(n == 0) return 0;
if(n == 1 || n == 2) return 1;
//dp表
vector<int> dp(n+1);
//初始化
dp[0] = 0;
dp[1] = dp[2] = 1;
//填表
for(int i = 3; i <= n; i++)
{
dp[i] = dp[i-1] + dp[i-2] + dp[i-3];
}
//返回值
return dp[n];
}
};
这里可以用空间优化,求当前状态的时候,只依赖前面3个状态。用滚动数组:
class Solution {
public:
int tribonacci(int n)
{
if(n == 0) return 0;
if(n == 1 || n == 2) return 1;
int a = 0, b = 1, c = 1, d = 0;
for(int i = 3; i <= n; i++)
{
d = a + b + c;
a = b;
b = c;
c = d;
}
return d;
}
};
面试题 08.01. 三步问题
- 到1号位置:1种方法(起始位置上2个台阶)
- 到2号位置:
起始位置直接上2阶
1号位置上1阶(经过1号一种方法)
1+1 = 2种方法 - 到3号位置
从起始位置上3阶
1号位置上2阶(经过1号一种方法)
2号位置上1阶(经过2号两种方法)
1 + 1 + 2 = 4种方法 - 到4号位置
从1号位置上3阶(经过1号一种方法)
从2号位置上2阶(经过2号两种方法)
从3号位置上1阶(经过3号4种方法)
1 + 2 + 4 = 7种方法
之后就是同理……
算法原理
- 状态表示: 到达i号台阶一共有多少种方法
- 状态转移方程: 以i位置最近的一步(三种,因为可以跨1、2、3阶)
即
dp[i] = dp[i-3] + dp[i-2] + dp[i-1] - 初始化: 一个状态依赖前3个状态,刚刚上面推出了
dp[1] = 1; dp[2] = 2; dp[3] = 4; - 填表顺序: 从左往右
- 返回值: dp[i]
代码实现
class Solution {
public:
int waysToStep(int n)
{
if(n == 1) return 1;
if(n == 2) return 2;
if(n == 3) return 4;
vector<int> dp(n + 1);
int MOD = 1e9 + 7;
//初始化
dp[1] = 1;
dp[2] = 2;
dp[3] = 4;
//到达i台阶有多少种方法
for(int i = 4; i <= n; i++)
{
//上台阶3种, 选取最近一步划分
//i-1 i-2 i-3
dp[i] = ((dp[i-1] + dp[i-2]) % MOD + dp[i-3]) % MOD;
}
return dp[n];
}
};
746. 使用最小花费爬楼梯
题目有一个要注意的,到达楼梯顶,并不是数组末尾元素,而是在末尾元素的下一个位置
算法原理
- 状态表示: 以xx位置为结尾,xxx(题目要求)
这里的xxx就是到达i位置的最小花费 - 状态转移方程: 以i位置最近的一步(两种,因为可以跨1、2阶)
即
dp[i] = min(dp[i-2]+cost[i-2], dp[i-1] + cost[i-1]) - 初始化(保证填表不越界):
dp[0] = dp[1] = 0; dp[2] = 2; dp[3] = 4; - 填表顺序: 从左往右
- 返回值: dp[i]
代码实现
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost)
{
int n = cost.size();
vector<int> dp(n+1);
for(int i = 2; i <= n; i++)
{
dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]);
}
return dp[n];
}
};
91. 解码方法
算法原理
- 状态表示: 以某个位置为结尾,xxx
即
dp[i]
表示以i位置为结尾,解码方法的总数 - 状态转移方程: 根据最近一步,划分问题
- 初始化: 一个状态依赖前2个状态
- 填表顺序: 从左往右
- 返回值: dp[i-1]
代码实现
class Solution {
public:
int numDecodings(string s)
{
int n = s.size();
vector<int> dp(n);
dp[0] = s[0] != '0';
if(n == 1) return dp[0];
if(s[0] != '0' && s[1] != '0')
{
dp[1] += 1;
}
int cmb = (s[0]-'0')*10 + (s[1]-'0');
if(cmb >= 10 && cmb <= 26)
{
dp[1] += 1;
}
for(int i = 2; i < n; i++)
{
if(s[i] != '0')
{
dp[i] += dp[i-1];
}
cmb = (s[i-1]-'0')*10 + (s[i]-'0');
if(cmb >= 10 && cmb <= 26)
{
dp[i] += dp[i-2];
}
}
return dp[n-1];
}
};
代码优化:
为什么虚拟节点可以填1?因为在原始的0和1位置拼接起来,要是能解码成功,说明找到了一种解码方式,是要加上dp[0]的值,如果dp[0]为0的话,就相当于忽略掉了。
class Solution {
public:
int numDecodings(string s)
{
int n = s.size();
vector<int> dp(n+1);
dp[0] = 1;
dp[1] = s[0] != '0';
for(int i = 2; i <= n; i++)
{
if(s[i-1] != '0')
{
dp[i] += dp[i-1];
}
int cmb = (s[i-2]-'0')*10 + (s[i-1]-'0');
if(cmb >= 10 && cmb <= 26)
{
dp[i] += dp[i-2];
}
}
return dp[n];
}
};
热门推荐
轻松在线查询!2025年如何实时追踪报案进度与案件受理状态
混响与回声:有什么区别?
萤石硬盘录像机Web访问完全指南
英镑横盘整理,市场关注英国央行降息前景与特朗普关税政策
了解身边的水环境,科普知识走进社区
只看王羲之的签名,就是一种享受!
螺丝被拧圆后应该如何处理?有哪些补救措施可以采取?
做蛋糕许愿多少鸡蛋?做许愿蛋糕,鸡蛋数量有讲究!多少个才让愿望实现?!
甘肃“四普”进行时之政策法规标准④丨第四次全国文物普查的工作任务
面部不显老的十个实用小妙招,坚持做效果好!
如何安全高效地进行大额资金转账?这些转账方式有哪些安全措施?
影像技术专业就业前景分析
动物为什么会迁徙
Excel计算后数据导出指南:多种实用方法详解
学起来津津有味!这门课用成语展现中国文化的独有魅力!
腹肌锻炼秘诀:高效方法与个性化计划!
男宝宝取名宥字搭配寓意
肠旺面怎么做?正宗肠旺面的做法步骤是什么?
卫生间隔断用什么材料(卫生间干湿分离隔断用什么材料好)
如何与货代公司签订物流合同?(跨境电商必备技能)
此地无银三百两
已持仓基金这样管,轻松优化投资组合
第一次旅游如何确保手机和网络畅通
劳动仲裁时效的法律援助与咨询
夜惊还是噩梦,如何区分?
泄露商业秘密的需要承担什么责任
为有效的用户留存率而设计
香港公司法下的股东无限连带责任:深入解析与实际案例
硅谷银行破产事件复盘:缘由为何?影响又有几何?
硅谷银行破产事件复盘:缘由为何?影响又有几何?