问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

超几何分布

创作时间:
作者:
@小白创作中心

超几何分布

引用
1
来源
1.
https://www.cnblogs.com/codersgl-blog/p/18652528

超几何分布是一种离散概率分布,常用于描述从有限个物件(其中包含两类不同特性的物件)中不放回地抽取一定数量物件,其中某类物件出现特定个数的概率。以下从其定义、公式、特点、应用场景来详细介绍:

  1. 定义 :假设存在$N$个物件,其中有$M$个具有某种特征(例如次品),剩下$N-M$个不具有该特征(例如正品)。现在从这$N$个物件中不放回地随机抽取$n$个物件,设$X$表示抽取的$n$个物件中具有该特征的物件个数,则$X$服从超几何分布。

  2. 概率公式 :$P\left(X=k\right)=\frac{\left(\genfrac{}{}{0}{}{M}{k}\right)\left(\genfrac{}{}{0}{}{N-M}{n-k}\right)}{\left(\genfrac{}{}{0}{}{N}{n}\right)}$,其中$k$为抽取到具有某种特征物件的个数,$\left(\genfrac{}{}{0}{}{a}{b}\right)=\frac{a!}{b!\left(a-b\right)!}$表示从$a$个元素中选取$b$个元素的组合数。这里$k$的取值范围需满足$max\left(0,n-\left(N-M\right)\right)\le k\le min\left(n,M\right)$。

  3. 特点

    • 有限总体 :超几何分布所涉及的总体数量$N$是有限的,这与一些基于无限总体的概率分布(如正态分布等)有明显区别。
    • 不放回抽样 :抽取过程是不放回的,即每次抽取后,总体中的物件数量会减少,这使得每次抽取的概率会发生变化。例如,在一个装有5个红球和3个白球的盒子里,第一次抽中红球的概率是$\frac{5}{8}$,若不放回,第二次再抽时,抽中红球的概率就变为$\frac{4}{7}$(若第一次抽中红球)或$\frac{5}{7}$(若第一次抽中白球)。
  4. 应用场景

    • 产品质量抽检 :在产品质量检测中,如果一批产品总数有限,已知其中次品的大致数量,从这批产品中随机抽取一定数量进行检测,求抽到一定数量次品的概率,就可以用超几何分布来计算。例如,一批100件产品中有10件次品,从中随机抽取15件,计算抽到3件次品的概率,就可利用超几何分布。
    • 抽样调查 :在社会调查等领域,若总体数量有限,且总体中具有某种特征的个体数量已知,通过不放回抽样来估计样本中具有该特征个体数量的概率分布。例如,要调查一个1000人的社区中,有200人参加过志愿者活动,现随机抽取100人,求其中参加过志愿者活动人数的概率分布,超几何分布可提供有效的计算方法。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号