以图搜图架构优化:使用客户端模型提取图像特征
创作时间:
作者:
@小白创作中心
以图搜图架构优化:使用客户端模型提取图像特征
引用
CSDN
1.
https://blog.csdn.net/weixin_39489487/article/details/140183786
以图搜图系统是一种基于图像内容的搜索技术,通过提取图像特征向量并在向量数据库中进行相似性检索,实现根据图像内容搜索相似图像的功能。本文将探讨如何通过在客户端提取图像特征来优化以图搜图系统的架构。
系统架构
典型的搜图系统整体架构时序图如下:
- 客户端上传图像到服务端。
- 服务端存储图像至对象存储、插入结构化数据至关系型数据库、发送消息至 MQ 消息队列。
- 服务端对客户端请求返回响应。
- 图像搜索服务接受 MQ 的消息,下载图像内容,使用特定模型提取图像特征向量,然后将特征向量插入到向量数据库。
这里使用 MQ 的主要原因有:
- 异步快速响应,因为提取图像特征比较耗时,如果是同步的过程则会对客户端体验不友好。
- 解耦服务、服务异构,提取图像特征属于计算机视觉领域,编程语言生态基本是 Python ,而后端服务则常见于 Java、Golang、Node.js 等,这在架构上就要求服务异构和解耦。
- 削峰填谷,由于用户上传图像具有波峰波谷的天然特性,使用 MQ 可以使下游图像计算保持平稳。
图像搜索过程:
- 客户端上传图像到服务端。
- 服务端发起调用并将图像传递到图像搜索服务,图像搜索服务提取图像特征向量,然后查询向量数据库进行相似性搜索,最后返回向量搜索结果。
- 服务端根据向量搜索结果查询结构化数据,整合数据,最后响应。
我们可以看到以上系统中,比较耗时的有两部分:
- 图像传递链路长:客户端 -> 服务端 -> 对象存储 -> 图像搜索服务。
- 图像特征计算比较耗时、且比较消耗服务器资源。
使用客户端模型优化架构
为了进一步优化系统架构,我们可以尝试使用客户端模型进行图像特征提取。
图像上传过程:
- 客户端向服务端请求对象存储的直传地址,然后客户端直接将图像内容传递到对象存储(需要对象存储支持直传操作)。
- 客户端进行本地计算,提取图像特征向量,然后传递特征向量和结构化数据给服务端。
- 服务端对结构化数据和向量数据分别插入到不同的数据库,完成响应。
图像搜索过程:
- 客户端进行本地计算,提取图像特征向量,然后传递特征向量和结构化数据给服务端。
- 服务端分别进行向量检索和结构化数据查询,整合数据,完成响应。
优化后的架构:
- 图像传递链路短,只有客户端 -> 对象存储。
- 图像特征计算卸载到了客户端完成,服务器不需要再消耗计算资源。
- 减少了 MQ 和图像搜索服务这两个构件,架构更加简单、复杂度降低。
客户端模型的可行性和约束
客户端相比于服务端具有硬件资源有限、且不可扩展的特点,因此这就要求客户端使用的模型要更小、计算消耗更少。我们根据上图中的模型对比可以看到 mobilenet 这种模型更符合我们的需求(模型的名字就能看出来)。
示例
以下给出一个前端使用 mobilenet 完成图像特征提取的示例:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/mobilenet"></script>
</head>
<body>
<input type="file" id="imageInput">
<button onclick="extractFeatures()">Extract Features</button>
<pre id="result"></pre>
<script>
let model;
async function loadModel() {
if (!model) {
// 加载模型时 mobilenet 会去 storage.googleapis.com 下载
model = await mobilenet.load({version: 2, alpha: 1.0});
}
return model;
}
function preprocessImage(image) {
const tensor = tf.browser.fromPixels(image)
.resizeNearestNeighbor([224, 224])
.toFloat()
.expandDims();
return tensor.div(255.0);
}
async function extractFeatures() {
const input = document.getElementById('imageInput');
if (input.files.length === 0) {
alert('Please select an image file first.');
return;
}
const model = await loadModel();
const timeStart = Date.now();
const file = input.files[0];
const reader = new FileReader();
reader.onload = async function (e) {
const image = new Image();
image.src = e.target.result;
image.onload = async function () {
const processedImage = preprocessImage(image);
const features = model.infer(processedImage, false); // 去掉最后的全连接层
const featuresArray = await features.array();
document.getElementById('result').textContent = JSON.stringify(featuresArray, null, 2);
console.log(`Extract feature spend: ${Date.now() - timeStart} ms`);;
}
}
reader.readAsDataURL(file);
}
</script>
</body>
</html>
然后在我的笔记本电脑简单测试的结果:
从上图可以看到,在我的客户端处理一张图像可以在一秒内完成,当然实际耗时取决于硬件资源和图像大小。
热门推荐
肺部结节手术费用详解:从5000元到8万元不等
《绝区零》冯·莱卡恩角色介绍
AI来袭!这些工作或将率先“下岗”,你的职业安全吗?
斯宾诺莎“神即自然”的三个内涵是什么?
胶黏剂使用中的固化时间
傅玄:西晋文学家、思想家的生平与诗文
Excel单元格行间距调整方法详解
Excel批量修改行间距的四种方法
“二十三,蹿一蹿”这个说法科学吗?医生:正确“拔高”在这两个时期→
正月二十三,“不杀牛、跳火堆!这个被遗忘的节日,竟是农耕文明的“感恩日”?
鼻炎患者饮食注意事项全解析
智慧文旅|文旅融合视角下古村落沉浸式体验路径探析与创新实践
企业之间的股权转让涉及哪些税种?如何操作?
电泳技术:生物化学实验常用技术
智能马桶盖水压不够怎么办?家庭水压调节技巧大揭秘
智能马桶冲水无力怎么办?图解三种常见原因及解决办法
如何睡眠才对眼睛有益
出纳与会计岗位职责核心区别是什么?
超声波清洗机清洗眼镜的液体选择与使用指南
戊戌变法的性质与历史地位
上山下金是什么字?汉字”崟”的构形解析与山岳意象
百岁长寿老人的十大饮食偏好
紫外线杀菌炉的紫外线波长是多少?不同波长对杀菌作用有何影响?
手提式紫外灯的杀菌和诱变原理
360漏洞平台推荐的10本网络安全必读佳作
白银期货走势分析
虾青素的副作用是什么
“AI+医疗”已成为热门应用领域 “AI医生”如何辅助医疗?
拿个脸盆就能预防晕车?春运中,真正的“防晕车”秘诀是…
二尖瓣狭窄有哪些症状