线性代数基础概念:向量空间
创作时间:
作者:
@小白创作中心
线性代数基础概念:向量空间
引用
CSDN
1.
https://m.blog.csdn.net/weidl001/article/details/139997506
向量空间是线性代数中最基本的概念之一,它为我们提供了一个抽象的框架,用于研究向量和矩阵之间的关系。理解向量空间的概念,是学习线性代数的关键。
向量空间的定义
向量空间是一个集合,其中包含了满足以下条件的向量:
- 加法运算: 任意两个向量相加,结果仍然是该集合中的向量。
- 数乘运算: 任意一个向量乘以一个数,结果仍然是该集合中的向量。
更准确地说,向量空间是一个集合 V,以及定义在 V 上的两种运算:
- 加法运算: V 中任意两个向量 u 和 v 的和 u + v 仍然是 V 中的向量。
- 数乘运算: V 中任意一个向量 u 和任何实数 a 的乘积 au 仍然是 V 中的向量。
例如:
- 二维平面上的所有向量: 我们用 (x, y) 表示二维平面上的一个向量,其中 x 和 y 是实数。两个二维向量相加,或者一个二维向量乘以一个数,结果仍然是二维向量。例如,(1, 2) + (3, 4) = (4, 6), 2 * (1, 2) = (2, 4)。
- 所有实数的集合: 两个实数相加,或者一个实数乘以一个数,结果仍然是实数。例如,2 + 3 = 5, 2 * 3 = 6。
- 所有 n 维向量的集合: n 维向量可以表示为 (x1, x2, ..., xn),其中 x1, x2, ..., xn 是实数。两个 n 维向量相加,或者一个 n 维向量乘以一个数,结果仍然是 n 维向量。例如,(1, 2, 3) + (4, 5, 6) = (5, 7, 9), 2 * (1, 2, 3) = (2, 4, 6)。
向量空间的性质
向量空间具有以下重要性质:
- 加法交换律: u + v = v + u
- 加法结合律: (u + v) + w = u + (v + w)
- 零向量: 存在一个向量 0,使得对于任意向量 u,有 u + 0 = u。
- 负向量: 对于任意向量 u,存在一个向量 -u,使得 u + (-u) = 0。
- 数乘分配律: a(u + v) = au + av
- 数乘结合律: (ab)u = a(bu)
- 单位元: 1u = u
这些性质保证了向量空间中的运算具有良好的性质,使得我们可以进行各种线性代数运算。
基底和维数
基底是向量空间中的一组线性无关的向量,它们可以线性表示向量空间中的所有向量。
线性无关指的是向量空间中的一组向量,其中任何一个向量都不能被其他向量线性表示。
线性组合指的是向量空间中的一组向量,通过数乘和加法运算得到的新的向量。
例如:
- 二维平面上的向量空间: 基底可以是 {(1, 0), (0, 1)},这两个向量线性无关,并且可以线性表示二维平面上的所有向量。例如,向量 (3, 2) 可以表示为 3 * (1, 0) + 2 * (0, 1)。
- 三维空间上的向量空间: 基底可以是 {(1, 0, 0), (0, 1, 0), (0, 0, 1)},这三个向量线性无关,并且可以线性表示三维空间上的所有向量。
维数是向量空间的基底中向量的个数。
例如:
- 二维平面上的向量空间的维数为 2。
- 三维空间上的向量空间的维数为 3。
基底和维数是向量空间的重要特征,它们可以帮助我们理解向量空间的结构。
子空间
子空间是向量空间的一个子集,它本身也是一个向量空间。
例如:
- 二维平面上的所有向量构成一个向量空间,而所有经过原点的直线也构成一个子空间。 这是因为,经过原点的直线上的向量相加,或者乘以一个实数,结果仍然在同一个直线上。
- 三维空间上的所有向量构成一个向量空间,而所有经过原点的平面也构成一个子空间。 这是因为,经过原点的平面上的向量相加,或者乘以一个实数,结果仍然在同一个平面上。
- 所有实数系数的多项式构成的集合是一个向量空间,所有次数不超过 n 的多项式构成的集合是这个向量空间的一个子空间。 这是因为,次数不超过 n 的多项式相加,或者乘以一个实数,结果仍然是次数不超过 n 的多项式。
子空间是向量空间的子集,它继承了向量空间的加法和数乘运算,因此它本身也是一个向量空间。
向量空间的例子
- 实数空间 Rn: 所有 n 维实数向量的集合,构成一个向量空间。
- 复数空间 Cn: 所有 n 维复数向量的集合,构成一个向量空间。
- 多项式空间 Pn: 所有次数不超过 n 的多项式的集合,构成一个向量空间。
- 函数空间: 所有定义在某个区间上的函数的集合,构成一个向量空间。
总结
向量空间是线性代数的基础概念,它为我们提供了研究向量和矩阵的抽象框架。理解向量空间的定义、性质、基底、维数、线性无关、线性组合和子空间等概念,是学习线性代数的关键。
热门推荐
在网上买彩票违法吗?彩票店打错票该赔偿吗?
俄罗斯人大规模涌入中国,5万人选择长期定居,跨国婚姻成新常态
深港亲子家庭共享阅读!福田街道口岸社区开展绘本讲解活动
三国时期的尊称“主公”:源于对领袖的忠诚与敬仰
曹丕英年早逝的原因探究,是身体出现了问题吗?
别再售卖 5块钱 的 Win10 激活码了,后果很严重
梦境中的潜在风险:解读无意中违法犯罪的法律边界
磁吸假睫毛藏有隐患,眼科医生提醒:不可长期佩戴
皇太极与海兰珠:清初宫廷中的深情与权力
如何处理幼儿睡眠过程中出汗过多的问题
脚底板疼怎么治疗最有效
如何改革收入分配机制?这些改革措施对社会公平有何影响?
见“郑”欢喜年之“胡辣汤英雄会”:一碗胡辣汤里的温情与年味
【数据结构】二叉树——层序遍历
从“下一个更好”,到“把握好现在”,相亲者正在变化
糖尿病,是怎么让眼睛失明的?
疏肝健脾清湿热的中成药
梳理“西游故事”的源与流
【以案释法】聚焦未成年人网络保护 保护未成年人身心健康
如何投诉银行违规放贷?三种途径全解析
服用肠虫清后多久见效?
欠钱怎么强制执行?法律程序全解析
解读江门两会 | 银发经济如何发展?政协委员这样建议
醉里梦回,酒中人生的故事,用醉陶冶人生
纯电动车一年保值率出炉,榜单前十车型中,有六款是国产车
为什么会长痔疮主要是什么原因
颈椎病的最好5种运动
养老产业迎黄金发展期,今年银发经济规模可达9万亿
手机摄像头参数在哪里看
公积金贷款剩余利率查询方法:了解如何查询公积金贷款剩余利率的具体方法