问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

自动泊车系统中的YOLOv8+pose关键点车位线检测

创作时间:
作者:
@小白创作中心

自动泊车系统中的YOLOv8+pose关键点车位线检测

引用
CSDN
1.
https://blog.csdn.net/qq1309399183/article/details/143864898

自动泊车系统是现代汽车的重要组成部分,它不仅能够提高驾驶的安全性,还能在一定程度上解决城市停车难的问题。YOLOv8作为YOLO系列的最新版本,在速度和精度上都有显著提升,为自动泊车系统中的车位线检测提供了高效、准确的解决方案。本文将从数据准备、模型训练到推理过程,全面解析基于YOLOv8的关键点车位线检测技术。

数据准备与标注

数据收集

首先,需要收集大量包含不同场景下的停车位图片。这些图片应该覆盖多种环境条件,如白天、夜晚、晴天、雨天等,以确保模型具有良好的泛化能力。此外,还应包括不同类型的停车位,如平行式、垂直式和斜向式停车位。

数据标注

对于每一张图片,需要精确标注出车位线的关键点位置。这通常涉及到以下几个步骤:

  • 选择标注工具:可以使用Labelme、CVAT等专业的图像标注工具。
  • 定义关键点:确定车位线上的几个关键点,例如车位线的起点、终点以及中间的几个控制点。这些关键点用于描述车位线的形状和位置。
  • 标注过程:在标注工具中,手动点击每个关键点的位置,并记录其坐标信息。对于复杂的车位线,可能需要增加更多的关键点以更准确地描述其形状。
  • 质量检查:完成标注后,进行质量检查,确保每个关键点的位置准确无误。可以邀请多名标注人员进行交叉验证,提高标注的准确性。

数据增强

为了进一步提升模型的鲁棒性和泛化能力,可以通过数据增强技术生成更多样化的训练样本。常见的数据增强方法包括旋转、缩放、裁剪、颜色变换等。这些操作可以在保持原始信息不变的前提下,模拟不同的拍摄角度和光照条件,从而丰富训练集。

模型训练

模型选择与配置

YOLOv8是YOLO系列的最新版本,相比前代模型,在速度和精度上都有显著提升。选择YOLOv8作为基础模型,可以根据具体需求调整网络结构和超参数。例如,可以调整输入图像的分辨率、锚框的尺寸和数量等。

损失函数设计

在关键点检测任务中,除了传统的边界框回归损失外,还需要引入关键点定位损失。常用的损失函数包括均方误差(MSE)和Huber损失。通过优化这些损失函数,使模型能够同时学习到车位线的边界框和关键点位置。

训练过程

使用标注好的数据集对模型进行训练。训练过程中需要注意以下几点:

  • 批量大小:根据GPU内存大小选择合适的批量大小。较大的批量大小可以加速训练,但也可能导致内存不足。
  • 学习率调整:合理设置学习率及其衰减策略,避免模型过拟合或欠拟合。可以采用学习率预热、余弦退火等方法。
  • 正则化:为了防止过拟合,可以添加L1或L2正则化项,或者使用Dropout等技术。
  • 评估指标:在训练过程中,定期在验证集上评估模型性能。常用的评估指标包括平均精度(mAP)、关键点定位误差等。

模型优化

通过多次迭代训练,不断调整模型结构和超参数,直至达到满意的性能。可以尝试使用混合精度训练、知识蒸馏等技术进一步提升模型效果。

推理过程

模型部署

将训练好的模型导出为适用于目标平台的格式,如ONNX、TensorRT等。确保模型在实际应用场景中能够高效运行。

图像预处理

在进行推理之前,需要对输入图像进行预处理,包括调整图像大小、归一化等操作,使其符合模型输入的要求。

推理执行

将预处理后的图像输入模型,得到预测结果。输出包括车位线的边界框和关键点位置。

后处理

对模型输出进行后处理,例如去除低置信度的预测结果、平滑关键点位置等。通过后处理,可以进一步提高检测的准确性和稳定性。

决策逻辑

根据检测到的车位线信息,结合车辆当前位置和姿态,计算出最佳的泊车路径。这一过程通常涉及路径规划和控制算法,确保车辆能够安全、平稳地停入目标车位。

结论

基于YOLOv8的关键点车位线检测技术为自动泊车系统提供了一种高效、准确的解决方案。通过精心准备的数据集、合理的模型配置和优化的训练策略,可以实现对复杂场景下停车位的高精度识别。未来,随着深度学习技术的不断进步,这一领域的研究将更加深入,为智能驾驶的发展带来更多可能性。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号