问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

SPSS如何进行KMO检验?

创作时间:
作者:
@小白创作中心

SPSS如何进行KMO检验?

引用
百度
1.
https://zhidao.baidu.com/question/2086741295981846508.html

在SPSS中,KMO(Kaiser-Meyer-Olkin)检验是用来评估样本数据是否适合进行因子分析的一种方法。KMO检验的结果以测度值来表示,该值越大,表示数据更适合进行因子分析。通常,KMO测度值大于0.5时,可以考虑进行因子分析;当该值达到0.7以上时,认为较为理想。

KMO测度值的具体分类如下:

  • 0.9以上:非常适宜进行因子分析
  • 0.8-0.9:适宜
  • 0.7-0.8:适合
  • 0.6-0.7:尚可
  • 0.5-0.6:较差
  • 0.5以下:不宜进行因子分析

进行因子分析时,还需要考虑样本量。理想情况下,样本量与变量数的比例应在5:1以上。总样本量不应少于100,且变量之间需要存在一定程度的相关性。

除了KMO检验,Bartlett's球型检验也是评估数据是否适合因子分析的一个方法。该检验基于相关系数矩阵,检验零假设:相关系数矩阵是单位阵,即变量之间相互独立。如果Bartlett's球型检验的统计量较大,且对应的概率值小于用户设定的显著性水平,则可以拒绝零假设,认为变量之间存在显著相关性,不适合独立提供信息。

举例来说,如果巴特利球形检验统计量较大,相应的概率Sig小于0.001,那么可以认为相关系数矩阵与单位阵有显著差异,即变量之间不是独立的。结合KMO值和Bartlett's球型检验的结果,如果KMO值足够高(如0.762),且Bartlett's球型检验表明变量间存在显著差异,则可以认为原有变量适合作因子分析。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号