问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

时间复杂度详解:从基本概念到计算方法

创作时间:
作者:
@小白创作中心

时间复杂度详解:从基本概念到计算方法

引用
CSDN
1.
https://m.blog.csdn.net/Eirlys_North/article/details/52959540

时间复杂度是衡量算法效率的重要指标,它反映了算法执行时间随输入规模增长的变化趋势。本文将从基本概念出发,详细讲解时间复杂度的计算方法,并通过实例帮助读者掌握这一重要概念。

一、时间复杂度的基本概念

1.1 时间频度

一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道算法花费的时间多少。

一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度,记为T(n)。

1.2 时间复杂度

n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。

一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度,简称时间复杂度。

注意,时间频度与时间复杂度是不同的,时间频度不同但时间复杂度可能相同。如:T(n)=n^2+3n+4与T(n)=4n2+2n+1它们的频度不同,但时间复杂度相同,都为O(n^2)。

常见的时间复杂度有:

  • 常数阶O(1)
  • 对数阶O(log2n)
  • 线性阶O(n)
  • 线性对数阶O(nlog2n)
  • 平方阶O(n^2)
  • 立方阶O(n^3)
  • k次方阶O(n^k)
  • 指数阶O(2^n)
  • O(n!)
  • O(n^n)


1.3 最坏时间复杂度和平均时间复杂度

最坏情况下的时间复杂度称最坏时间复杂度。一般不特别说明,讨论的时间复杂度均是最坏情况下的时间复杂度。这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的上界,这就保证了算法的运行时间不会比任何更长。

在最坏情况下的时间复杂度为T(n)=0(n),它表示对于任何输入实例,该算法的运行时间不可能大于0(n)。平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,算法的期望运行时间。指数阶0(2n),显然,时间复杂度为指数阶0(2n)的算法效率极低,当n值稍大时就无法应用。

二、时间复杂度的计算方法

2.1 基本计算步骤

根据定义,可以归纳出基本的计算步骤:

  1. 计算出基本操作的执行次数T(n)
  2. 计算出T(n)的数量级
  3. 用大O来表示时间复杂度

例如:

for(i=1;i<=n;++i)
{
    for(j=1;j<=n;++j)
    {
        c[ i ][ j ]=0; //该步骤属于基本操作 执行次数:n^2
        for(k=1;k<=n;++k)
            c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //该步骤属于基本操作 执行次数:n^3
    }
}

则有 T(n)= n^2+n^3,根据上面括号里的同数量级,我们可以确定 n^3为T(n)的同数量级
则有f(n)= n^3,然后根据T(n)/f(n)求极限可得到常数c
则该算法的时间复杂度:T(n)=O(n^3)

2.2 精简计算步骤

  1. 找到执行次数最多的语句
  2. 计算语句执行次数的数量级
  3. 用大O来表示结果

例如:

(1) for(i=1;i<=n;i++) //循环了n*n次,当然是O(n^2)
    for(j=1;j<=n;j++)
        s++;

(2) for(i=1;i<=n;i++) //循环了(n+n-1+...+1)≈(n^2)/2 ,同上
    for(j=i;j<=n;j++)
        s++;

(4) i=1;k=0;
    while(i<=n-1){
        k+=10*i;
        i++; 
    }
    //循环了n-1≈n次,所以是O(n)

(5) for(i=1;i<=n;i++)
    for(j=1;j<=i;j++)
        for(k=1;k<=j;k++)
            x=x+1;
    //循环了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6≈(n^3)/3,即O(n^3)

(6) x=91; y=100;
    while(y>0) if(x>100) {x=x-10;y--;} else x++;
    //T(n)=O(1),与n无关

(7) i=n-1;
    while(i>=0&&(A[i]!=k))
        i--;
    return i;
    //此算法中的语句(3)的频度不仅与问题规模n有关,还与输入实例中A的各元素取值及K的取值有关:
    //①若A中没有与K相等的元素,则语句(3)的频度f(n)=n;
    //②若A的最后一个元素等于K,则语句(3)的频度f(n)是常数0。

三、总结

  1. 时间复杂度取决于执行次数最多的语句,如当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。
  2. 如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)
  3. 算法的时间复杂度不仅仅依赖于问题的规模,还与输入实例的初始状态有关。

通过本文的学习,读者应该能够掌握时间复杂度的基本概念和计算方法,能够分析算法的时间效率,并在实际应用中选择合适的时间复杂度的算法。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号