问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

通俗理解随机微分方程及应用

创作时间:
作者:
@小白创作中心

通俗理解随机微分方程及应用

引用
CSDN
1.
https://blog.csdn.net/tMb8Z9Vdm66wH68VX1/article/details/141005109

随机微分方程(SDE)是一类含有随机扰动的微分方程,用来描述随机过程的动态行为。与常微分方程(ODE)不同,SDE在其模型中包含了一个或多个随机项,通常是布朗运动(或维纳过程)。SDE在金融、物理、生物数学等领域有广泛的应用。

随机微分方程(Stochastic Differential Equation, SDE)是一类含有随机扰动的微分方程,用来描述随机过程的动态行为。与常微分方程(ODE)不同,SDE在其模型中包含了一个或多个随机项,通常是布朗运动(或维纳过程)。SDE在金融、物理、生物数学等领域有广泛的应用。

用数学语言来说,一个典型的SDE可以写成这样:

这里, 是我们感兴趣的随机过程, 是确定性部分,描述了系统的趋势,而 则是随机性部分,反映了系统的随机波动。 是布朗运动,又称维纳过程,是描述随机扰动的经典工具。

布朗运动具有一些重要性质:初值为零,增量独立且服从正态分布,并且路径连续但不可微。这些性质使得布朗运动成为刻画随机现象的理想选择。

一个经典的随机微分方程模型是金融领域的几何布朗运动(Geometric Brownian Motion),用于描述股票价格的随机变化。它的数学形式为:

这里, 是股票的漂移率,代表了股票价格的平均增长速度;是波动率,反映了股票价格的波动程度。这个模型假设股票价格的对数收益率是正态分布的,从而捕捉了股票价格的随机波动特性。

假设股票的初始价格为 ,漂移率 ,波动率 ,模拟时间为 1 年,时间步长为 0.01 年。下图为股票价格变化模拟图像:

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号