常见数据结构时间复杂度比较表及图的存储方式
创作时间:
作者:
@小白创作中心
常见数据结构时间复杂度比较表及图的存储方式
引用
CSDN
1.
https://m.blog.csdn.net/weidl001/article/details/144222476
**本文总结了常见数据结构的时间复杂度,并附带了一些关于图的存储方式的额外知识点。内容主要包括以下几个部分:
- 常见数据结构(单链表、双链表、循环链表、栈、队列、数组、哈希表、二叉搜索树、堆)的时间复杂度表格
- 如何选择数据结构的说明
- 图的存储方式(邻接矩阵和邻接表)的比较**
常见数据结构时间复杂度比较表
数据结构 | 操作 | 平均时间复杂度 | 最坏时间复杂度 | 说明 |
|---|---|---|---|---|
单链表 | 查找(搜索) | O(n) | O(n) | 需要从头遍历到目标位置。 |
插入头部 | O(1) | O(1) | 常数时间插入新节点,修改头指针。 | |
插入尾部 | O(n) | O(n) | 需要遍历到尾节点,除非有尾指针。 | |
插入任意位置 | O(n) | O(n) | 需要遍历到指定位置。 | |
删除头部 | O(1) | O(1) | 修改头指针即可。 | |
删除尾部 | O(n) | O(n) | 需要找到尾节点的前驱节点。 | |
删除任意节点 | O(n) | O(n) | 需要找到目标节点的位置。 | |
遍历 | O(n) | O(n) | 遍历整个链表的所有节点。 | |
双链表 | 查找(搜索) | O(n) | O(n) | 与单链表相同。 |
插入头部 | O(1) | O(1) | 常数时间修改头指针和新节点的prev指针。 | |
插入尾部 | O(1) | O(1) | 通过尾指针直接访问,常数时间完成。 | |
插入任意位置 | O(n) | O(n) | 需要遍历到指定位置。 | |
删除头部 | O(1) | O(1) | 修改头指针和新头节点的prev指针即可。 | |
删除尾部 | O(1) | O(1) | 修改尾指针和前驱节点的next指针。 | |
删除任意节点 | O(n) | O(n) | 需要找到目标节点。 | |
遍历 | O(n) | O(n) | 遍历整个链表的所有节点。 | |
循环链表 | 查找(搜索) | O(n) | O(n) | 与单链表相同。 |
插入头部 | O(n) | O(n) | 需要找到尾节点以更新其next指针。 | |
插入尾部 | O(n) | O(n) | 需要遍历到尾节点,除非维护尾指针。 | |
删除头部 | O(n) | O(n) | 需要找到尾节点以更新其next指针。 | |
删除尾部 | O(n) | O(n) | 需要找到尾节点和其前驱节点。 | |
遍历 | O(n) | O(n) | 遍历整个循环链表,直到回到头节点。 | |
栈(链表实现) | 入栈(Push) | O(1) | O(1) | 常数时间在头部插入节点。 |
出栈(Pop) | O(1) | O(1) | 常数时间删除头部节点。 | |
获取栈顶(Peek) | O(1) | O(1) | 常数时间访问头部节点。 | |
判断是否为空 | O(1) | O(1) | 判断头指针是否为NULL。 | |
队列(链表实现) | 入队(Enqueue) | O(1) | O(1) | 常数时间在尾部插入节点。 |
出队(Dequeue) | O(1) | O(1) | 常数时间删除头部节点。 | |
获取队头(Front) | O(1) | O(1) | 常数时间访问头部节点。 | |
判断是否为空 | O(1) | O(1) | 判断头指针是否为NULL。 | |
数组 | 查找(按索引) | O(1) | O(1) | 常数时间直接访问目标索引。 |
插入(随机位置) | O(n) | O(n) | 插入位置后的所有元素需要移动。 | |
删除(随机位置) | O(n) | O(n) | 删除位置后的所有元素需要移动。 | |
遍历 | O(n) | O(n) | 遍历整个数组。 | |
哈希表 | 查找 | O(1) | O(n) | 平均情况O(1),最坏情况哈希冲突导致线性查找。 |
插入 | O(1) | O(n) | 平均情况O(1),最坏情况哈希冲突导致线性查找。 | |
删除 | O(1) | O(n) | 平均情况O(1),最坏情况哈希冲突导致线性查找。 | |
二叉搜索树 | 查找 | O(log n) | O(n) | 平衡树的平均时间复杂度为O(log n),退化为链表时最坏O(n)。 |
插入 | O(log n) | O(n) | 平衡树的平均时间复杂度为O(log n),退化为链表时最坏O(n)。 | |
删除 | O(log n) | O(n) | 平衡树的平均时间复杂度为O(log n),退化为链表时最坏O(n)。 | |
遍历 | O(n) | O(n) | 访问所有节点的总时间。 | |
堆(优先队列) | 插入 | O(log n) | O(log n) | 维护堆的结构需要对数时间。 |
删除最大/最小值 | O(log n) | O(log n) | 删除根节点并调整堆结构需要对数时间。 | |
获取最大/最小值 | O(1) | O(1) | 直接访问根节点。 |
如何选择数据结构
- 链表:适用于需要动态插入、删除的场景,但查找速度较慢。
- 数组:适用于需要快速访问(随机访问)的场景,但插入和删除效率低。
- 栈与队列:专注于特定操作(LIFO/FIFO),高效且易于实现。
- 哈希表:适用于需要快速查找和插入的场景,但可能需要处理冲突。
- 二叉搜索树:适用于需要排序的动态集合,但需要注意树的平衡性。
- 堆:适用于需要高效获取最大值或最小值的优先级队列场景。
时间复杂度决定了效率
- 对于大规模数据,优先选择具有对数时间复杂度或更优性能的数据结构。
- 在特定情况下(如数据较小或操作较少),简单的实现可能更具优势。
结合操作特点优化
- 例如,在频繁插入尾部的链表中,可以通过维护尾指针将时间复杂度从O(n)优化为O(1)。
图的存储方式
邻接矩阵
- 使用一个 n×nn \times nn×n 的二维数组存储图的信息。
- 如果顶点 iii 和顶点 jjj 有边,则 matrix[i][j]=1\text{matrix}[i][j] = 1matrix[i][j]=1(或权重值);否则为 0。
- 空间复杂度固定为 O(n2)O(n^2)O(n2)。
邻接表
- 每个顶点维护一个链表,链表中存储与该顶点相连的所有边。
- 空间复杂度为 O(n+e)O(n + e)O(n+e),其中 eee 是边的数量。
适用场景
- 稠密图:边的数量 eee 接近 n2n^2n2,邻接表的空间复杂度接近 O(n+n2)O(n + n^2)O(n+n2),且复杂的链表结构本身会增加存储开销。相比之下,邻接矩阵的固定空间复杂度 O(n2)O(n^2)O(n2) 更适合存储稠密图,因为不需要额外维护链表结构。
- 稀疏图:边数 eee 远小于 n2n^2n2,邻接表的空间复杂度 O(n+e)O(n + e)O(n+e) 比邻接矩阵 O(n2)O(n^2)O(n2) 更小,适合稀疏图。
存储方式比较
存储方式 | 适用场景 | 空间复杂度 | 优点 | 缺点 |
|---|---|---|---|---|
邻接矩阵 | 稠密图 | O(n2) | 简单直观,适合快速查询两点是否相连 | 对稀疏图浪费大量空间 |
邻接表 | 稀疏图 | O(n+e) | 节省空间,特别是稀疏图 | 查询任意两点是否相连时效率较低 |
热门推荐
包装材料怎么选择?带你了解常见包装材料及其最佳用途
维塔数码:电影特效界的传奇缔造者
《封神》系列:国产奇幻史诗的创新与争议
《封神》系列电影:中国电影工业的新里程碑
松山湖风景区:东莞最美自然景观推荐
珠三角考古游径第一站:东莞蚝岗遗址探秘
冬日限定!东莞松山湖&观音山三日游全攻略
用故事治愈心灵:从《海龟先生的心理疗愈》到叙事疗法
宜宾两日游详细旅游攻略:行程规划、预算估算及景点推荐
异地恋的心理挑战与应对策略
孙俪女儿的肖像画曝光,画面背后的故事让人泪目!
春日紫珍珠“桑葚”
从“种桑养蚕”到“种桑养地” 揭秘广东30余个桑树新品种
桑葚的七种食用方法
汤日杰教授:如何早期发现食管肿瘤
食管癌:症状、诊断、治疗与预防全解析
云和梯田景区门票价格一览,探索浙江梯田文化的魅力
哈尔滨排骨包子:冬日暖心美味
哈尔滨排骨包子:百年老店的味觉传奇
生命的意义是什么?柏格森为什么认为生命的本质是创造和变化?
宝宝患有先天性心脏病,有什么症状?怎么办?
属马与属兔的婚配运势分析 他们的感情之路将如何走
属虎和属马相冲还是相合?详解生肖三合关系
重庆必打卡网红景点TOP3揭秘!
重庆重返GDP第四背后:科技创新如何赋能经济跃升?
重庆直辖20年:从第四到第六的逆袭之路
李白教你写出高情商祝酒词
广州必打卡!石室圣心大教堂免费游
广州博物馆免费开放日:95年历史积淀,13万件珍藏等你来
如何对离婚家庭儿童进行评估和干预