常见数据结构时间复杂度比较表及图的存储方式
创作时间:
作者:
@小白创作中心
常见数据结构时间复杂度比较表及图的存储方式
引用
CSDN
1.
https://m.blog.csdn.net/weidl001/article/details/144222476
**本文总结了常见数据结构的时间复杂度,并附带了一些关于图的存储方式的额外知识点。内容主要包括以下几个部分:
- 常见数据结构(单链表、双链表、循环链表、栈、队列、数组、哈希表、二叉搜索树、堆)的时间复杂度表格
- 如何选择数据结构的说明
- 图的存储方式(邻接矩阵和邻接表)的比较**
常见数据结构时间复杂度比较表
数据结构 | 操作 | 平均时间复杂度 | 最坏时间复杂度 | 说明 |
|---|---|---|---|---|
单链表 | 查找(搜索) | O(n) | O(n) | 需要从头遍历到目标位置。 |
插入头部 | O(1) | O(1) | 常数时间插入新节点,修改头指针。 | |
插入尾部 | O(n) | O(n) | 需要遍历到尾节点,除非有尾指针。 | |
插入任意位置 | O(n) | O(n) | 需要遍历到指定位置。 | |
删除头部 | O(1) | O(1) | 修改头指针即可。 | |
删除尾部 | O(n) | O(n) | 需要找到尾节点的前驱节点。 | |
删除任意节点 | O(n) | O(n) | 需要找到目标节点的位置。 | |
遍历 | O(n) | O(n) | 遍历整个链表的所有节点。 | |
双链表 | 查找(搜索) | O(n) | O(n) | 与单链表相同。 |
插入头部 | O(1) | O(1) | 常数时间修改头指针和新节点的prev指针。 | |
插入尾部 | O(1) | O(1) | 通过尾指针直接访问,常数时间完成。 | |
插入任意位置 | O(n) | O(n) | 需要遍历到指定位置。 | |
删除头部 | O(1) | O(1) | 修改头指针和新头节点的prev指针即可。 | |
删除尾部 | O(1) | O(1) | 修改尾指针和前驱节点的next指针。 | |
删除任意节点 | O(n) | O(n) | 需要找到目标节点。 | |
遍历 | O(n) | O(n) | 遍历整个链表的所有节点。 | |
循环链表 | 查找(搜索) | O(n) | O(n) | 与单链表相同。 |
插入头部 | O(n) | O(n) | 需要找到尾节点以更新其next指针。 | |
插入尾部 | O(n) | O(n) | 需要遍历到尾节点,除非维护尾指针。 | |
删除头部 | O(n) | O(n) | 需要找到尾节点以更新其next指针。 | |
删除尾部 | O(n) | O(n) | 需要找到尾节点和其前驱节点。 | |
遍历 | O(n) | O(n) | 遍历整个循环链表,直到回到头节点。 | |
栈(链表实现) | 入栈(Push) | O(1) | O(1) | 常数时间在头部插入节点。 |
出栈(Pop) | O(1) | O(1) | 常数时间删除头部节点。 | |
获取栈顶(Peek) | O(1) | O(1) | 常数时间访问头部节点。 | |
判断是否为空 | O(1) | O(1) | 判断头指针是否为NULL。 | |
队列(链表实现) | 入队(Enqueue) | O(1) | O(1) | 常数时间在尾部插入节点。 |
出队(Dequeue) | O(1) | O(1) | 常数时间删除头部节点。 | |
获取队头(Front) | O(1) | O(1) | 常数时间访问头部节点。 | |
判断是否为空 | O(1) | O(1) | 判断头指针是否为NULL。 | |
数组 | 查找(按索引) | O(1) | O(1) | 常数时间直接访问目标索引。 |
插入(随机位置) | O(n) | O(n) | 插入位置后的所有元素需要移动。 | |
删除(随机位置) | O(n) | O(n) | 删除位置后的所有元素需要移动。 | |
遍历 | O(n) | O(n) | 遍历整个数组。 | |
哈希表 | 查找 | O(1) | O(n) | 平均情况O(1),最坏情况哈希冲突导致线性查找。 |
插入 | O(1) | O(n) | 平均情况O(1),最坏情况哈希冲突导致线性查找。 | |
删除 | O(1) | O(n) | 平均情况O(1),最坏情况哈希冲突导致线性查找。 | |
二叉搜索树 | 查找 | O(log n) | O(n) | 平衡树的平均时间复杂度为O(log n),退化为链表时最坏O(n)。 |
插入 | O(log n) | O(n) | 平衡树的平均时间复杂度为O(log n),退化为链表时最坏O(n)。 | |
删除 | O(log n) | O(n) | 平衡树的平均时间复杂度为O(log n),退化为链表时最坏O(n)。 | |
遍历 | O(n) | O(n) | 访问所有节点的总时间。 | |
堆(优先队列) | 插入 | O(log n) | O(log n) | 维护堆的结构需要对数时间。 |
删除最大/最小值 | O(log n) | O(log n) | 删除根节点并调整堆结构需要对数时间。 | |
获取最大/最小值 | O(1) | O(1) | 直接访问根节点。 |
如何选择数据结构
- 链表:适用于需要动态插入、删除的场景,但查找速度较慢。
- 数组:适用于需要快速访问(随机访问)的场景,但插入和删除效率低。
- 栈与队列:专注于特定操作(LIFO/FIFO),高效且易于实现。
- 哈希表:适用于需要快速查找和插入的场景,但可能需要处理冲突。
- 二叉搜索树:适用于需要排序的动态集合,但需要注意树的平衡性。
- 堆:适用于需要高效获取最大值或最小值的优先级队列场景。
时间复杂度决定了效率
- 对于大规模数据,优先选择具有对数时间复杂度或更优性能的数据结构。
- 在特定情况下(如数据较小或操作较少),简单的实现可能更具优势。
结合操作特点优化
- 例如,在频繁插入尾部的链表中,可以通过维护尾指针将时间复杂度从O(n)优化为O(1)。
图的存储方式
邻接矩阵
- 使用一个 n×nn \times nn×n 的二维数组存储图的信息。
- 如果顶点 iii 和顶点 jjj 有边,则 matrix[i][j]=1\text{matrix}[i][j] = 1matrix[i][j]=1(或权重值);否则为 0。
- 空间复杂度固定为 O(n2)O(n^2)O(n2)。
邻接表
- 每个顶点维护一个链表,链表中存储与该顶点相连的所有边。
- 空间复杂度为 O(n+e)O(n + e)O(n+e),其中 eee 是边的数量。
适用场景
- 稠密图:边的数量 eee 接近 n2n^2n2,邻接表的空间复杂度接近 O(n+n2)O(n + n^2)O(n+n2),且复杂的链表结构本身会增加存储开销。相比之下,邻接矩阵的固定空间复杂度 O(n2)O(n^2)O(n2) 更适合存储稠密图,因为不需要额外维护链表结构。
- 稀疏图:边数 eee 远小于 n2n^2n2,邻接表的空间复杂度 O(n+e)O(n + e)O(n+e) 比邻接矩阵 O(n2)O(n^2)O(n2) 更小,适合稀疏图。
存储方式比较
存储方式 | 适用场景 | 空间复杂度 | 优点 | 缺点 |
|---|---|---|---|---|
邻接矩阵 | 稠密图 | O(n2) | 简单直观,适合快速查询两点是否相连 | 对稀疏图浪费大量空间 |
邻接表 | 稀疏图 | O(n+e) | 节省空间,特别是稀疏图 | 查询任意两点是否相连时效率较低 |
热门推荐
企业如何防止内部数据泄露?6个实用技巧!
全球集装箱港口绩效排名:大连港第14!
大连港:从“满铁”到自由港的变迁
简帛医书中的养生智慧:从古代到现代的健康启示
《学习脑》:用脑科学解密高效学习法
《心灵解惑》:助力大学生应对心理压力的专业指南
2025年四季穿搭指南:从基础款到流行趋势
武汉冬季穿搭大作战:保暖又时髦!
农村"睡衣风":既丑又土为何受欢迎?揭秘背后原因
书里文城 醉美沈荡
企业如何避免被黑客“打脸”:数据泄露的预防与应对之道
大数据+可视化工具:企业数据泄漏排查的利器
数据泄露频发,企业如何建立完善应急响应机制?
港澳省钱攻略:1000元玩转香港澳门!
港澳五日游必打卡美食清单!
北海十大美食小吃,你吃过几种?
到天津最快25分钟!北京新增一座高铁站
《水浒传》中死得最惨的五个好汉,董平被腰斩,张顺被万箭穿心
【中药科普】望梅止渴,酸溜溜的乌梅你了解多少?
开封未来一周最佳出行攻略:大宋中国年,精彩不容错过!
兰亭序:千年墨香流转的书法艺术典范
赵孟頫《兰亭十三跋》:书法艺术的巅峰之作
穿越千年,走进《清明上河图》中的开封
司法部长教你防数据泄露!
GDPR下的数据泄露责任与赔偿新趋势
天台山一日旅游攻略(手把手带你玩转天台山)
假面骑士瓦伦新周边来袭!
假面骑士瓦伦三大形态完全攻略:从基础到进阶的战斗指南
假面骑士瓦伦被格罗塔虐惨了!这场战斗到底发生了什么?
133学生膺“孝道之星” 培养对社会及国家责任感