火爆全球的“常温超导”如果实现,在航天领域能带来哪些突破?
火爆全球的“常温超导”如果实现,在航天领域能带来哪些突破?
7月22日,韩国研究团队发布论文宣称实现了世界首个室温常压超导体后,随即在全球引发热潮。超导现象的发现被认为是20世纪最伟大的发明之一,也是物理学中的圣杯。然而发展至今,超导体的实际应用基本局限于磁悬浮等少数特定场景下。原因不难理解,维持材料超导性的极低超导Tc,这对大规模的应用开发来说是一道极大的障碍。如果室温便可实现超导,对人类社会将有重大影响。
什么是“室温超导”?
要了解“室温超导”,首先我们要知道什么是“超导”。“超导”是一种特殊的物理现象,指的是某些物质在低温或高压的情况下表现出“电阻为零”的性质,这种物质被称为“超导体”。
简单来说,“超导”就是在特定条件下电阻为零的现象。而“室温常压超导”,就是在不需要特殊条件的情况下,就能实现零电阻、抗磁性的现象。
超导体电阻为零,可以无损耗地输电;有完全抗磁性,液氮超导磁悬浮就是很直观的表现。
公开资料显示,1911年荷兰物理学家H·卡茂林·昂内斯发现汞在温度降至4.2K附近时突然进入一种新状态,其电阻小到实际上测不出来,他把汞的这一新状态称为超导态。目前大多数简单金属或合金材料的超导转变温度都在40K(-233℃)以下,限制了超导材料的广泛应用;目前仅发现铜氧化物超导体和镍氧化物超导体2种转变温度达到液氮温区77 K(-196℃)的非常规超导材料体系。
1933年,德国物理学家迈斯纳和奥森菲尔德认识到,只要材料温度低于超导临界温度,其内部的磁感应强度总和就为零,即具有完全抗磁性。这就是超导的检验标准“迈纳斯效应”。
那么低温超导是如何产生的呢?答案蕴含在精妙的微观世界中。
经典理论认为,电阻是电子在导线中碰撞、受阻所致。
然而,在超导材料中,电子会结成一对一对的所谓“库珀对”,就像舞蹈一样,迅速避开阻碍,实现电流的零电阻传输。这种奇妙的现象被认为是由材料晶体内部原子的振动引发的,也就是由巴丁、库珀、施瑞弗共同提出的“BCS理论”。
然而,受限于液氦等极低温条件,超导长期难以在大规模工程中广泛应用,也促使科研人员对“高温”超导的研究投入了巨大的热情。1986年,科学家们惊喜地发现,钇钡铜氧化物、铋系材料等在相对较高的液氮温区下仍然能够表现出超导现象。这意味着,可以将获取更简便、成本更低廉的液氮作为超导冷却剂。
这个突破为超导的实际应用提供了更广阔的“舞台”,也为许多大科学装置的建设提供了有力保障。比如,“东方超环”和国际热核聚变实验堆等设施都应用了新型超导电缆,有效降低了制冷系统的功率需求。
但“高温”超导研究当前似乎遇到了“理论滞后于现实”的困境。科学家们一直在努力探索其中的奥秘,至今仍未完全揭示其具体原理,基本上停留在假说阶段。例如,一些学者认为,电子之间复杂的相互作用、新的凝聚态现象等或许是“高温”超导诞生的主要原因。
不难看出,超导研究领域的所谓“高温”仍然不是大众日常能够体验到的,那么在室温条件下获得超导更是困难重重。
“室温超导”意味着什么?
目前超导材料的应用局限于低温和高压环境,如果室温常压超导材料取得突破,将在能源、交通、计算、医疗检测等诸多领域产生变革。
首先,在能源方面,原本电力的传输会产生消耗,且随着距离的增加,消耗会越大。而“室温超导”零电阻的特性,或将实现超长距离无损耗输电,产能和利用效率将会大大提升。
其次,在交通方面,无损的电力传输和高效的能源存储,或使新能源汽车实现充电五分钟行驶两千公里,磁悬浮列车或成为日常,未来将直接改变人们的交通方式。
最后,在信息处理方面,芯片将无需再顾及发热问题,手机也能拥有小型超算能力,算力的瓶颈将被突破,人工智能和数字技术将迎来爆发式发展。
可以说,“室温超导”带来的无损世界犹如科幻电影,无疑将开启第四次工业革命。
航天应用前景无限
航天是利用速度摆脱星球引力束缚、探索并开发浩瀚太空的伟大事业。而最经典的航天器运载工具就是火箭,一般利用燃料燃烧产生的高温高速喷流,产生强大的反作用力,将载荷不断加速、抬升,直到飞出大气层。
但现有的火箭大多数是从地面发射架上直接起飞,为了加速飞离空气稠密阻力大的对流层,需要消耗大量燃料,这也意味着火箭会损失许多宝贵的运力。
为了解决这个问题,航天发射机构提出了五花八门的创新方案,包括飞机挂载火箭空中发射、巨型飞艇和气球提升火箭到高空发射、离心机甩出火箭发射等。
比如,美国飞马座空射火箭在1990年成功入轨,在发射前会被悬挂在经过特别改装的客机机腹下。载机在13000米左右高度以0.8马赫平飞时,火箭被投放,随后点燃第一级固体发动机,加速爬升。
但这些发射方式都存在一些弊端,尤其是飞机等平台的运作维护成本不低,运输能力有限,一般只能发射小型火箭,入轨运力不足。例如,飞马座火箭的700公里太阳同步轨道运力仅有200公斤出头,只能投送小型载荷入轨,单位发射成本要高于很多地面发射的大中型火箭,因此飞马座火箭乃至后续的空射火箭规模化应用始终困难重重。
不过,一旦常温超导材料问世并成功实用化,航天发射史有望“翻开全新的一页”。比如,科研人员和工程师可以借鉴磁悬浮列车和电磁弹射器的原理,构建起一种新概念航天发射装置,其结构类似于一条垂直于地面的磁悬浮列车轨道。
届时,在矗立的发射塔上,悬浮线圈负责维持火箭的发射方向,并避免火箭与轨道发生摩擦而产生阻力,加速线圈则为火箭提供强大的起飞推力,帮助它尽快冲出空气稠密的近地高度。当火箭被发射装置充分加速并冲出对流层后,再点燃第一级发动机,继续加速爬升,最终入轨。
相比空中发射,这种发射方式基本上仅消耗电力,而且由于常温超导材料不需要配备复杂的冷却系统,发射装置的规模可以做得很大,因此有望将更重的载荷送入轨道,单位发射成本也会显著降低,很可能催生出更大的航天器组合体和全新的太空活动形态。
除此以外,当我们能够在室温下实现超导,航天飞行器的性能将会得到巨大的提升。当前,传统的电线传输方式存在能量损耗和功耗大的问题,限制了航天器的作业时间和距离。而室温超导的引入将会大大降低能量损耗,提升能源传输效率,使得航天器能够更长时间地工作,更远距离地探索宇宙。
室温超导的突破还将帮助我们解决航天器重量的问题。目前,航天器的能源系统需要耗费大量的重量和空间,以满足其长时间的运行需求。然而,室温超导的应用将使能源系统变得更加紧凑,从而减轻了航天器的整体重量,提升了其携带能力。这将为航天领域的进一步发展提供了更多的可能性,例如更大型的空间站、更强大的卫星等。
室温超导还将对航天领域的通讯系统带来质的飞跃。目前,航天器的通讯系统存在着信号衰减和噪声干扰等问题,限制了数据传输的可靠性和速度。然而,通过室温超导技术的应用,我们可以大幅度提升通讯系统的性能。超导导线的引入将降低信号衰减,同时减少噪声干扰,使得我们能够更快速、更稳定地传输大量的数据,为航天任务提供更加可靠的通讯保障。
室温超导的发展也将对航天领域的能源供应产生深远的影响。目前,航天器的能源系统主要依赖于太阳能电池板或化学电池,存在能源产生不稳定和有限的问题。而室温超导的应用将为航天器提供了一种全新的能源供应方式。通过利用超导线圈和磁场相互作用的原理,我们可以实现高效、稳定的能量传输,为航天器提供持续而可靠的能源,使其能够长时间地执行任务,甚至在夜晚或恶劣环境下也能保持高效运行。
最后
总之,超导技术在短短几十年内取得了巨大的进展,为人类追寻美好生活、探索未知世界带来了全新的可能。科研人员对超导的研究和实验不断深入,一直在不懈地探索和挑战着物质的极限。而航天作为众多最前沿科技的优先应用领域,未来常温超导也一旦成真,必将在此大放异彩,帮助人类进一步探索和开发浩瀚苍穹。
文章来源: 中国航天报,竞泰资本,笔耕不辍的小编