问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

数字图像处理中的统计排序滤波实验

创作时间:
作者:
@小白创作中心

数字图像处理中的统计排序滤波实验

引用
CSDN
1.
https://blog.csdn.net/weixin_67506931/article/details/139984866

数字图像处理中的统计排序滤波实验是理解图像滤波基本概念和掌握空域滤波原理的重要实践。本文通过Python编程语言,详细介绍了中值滤波、最大值滤波和最小值滤波等方法在图像处理中的应用,并通过实验比较了不同滤波方法的效果。

实验目的

  1. 理解图像滤波的基本概念;
  2. 掌握空域滤波的基本原理;
  3. 掌握图像中值滤波器的基本方法;
  4. 掌握椒盐噪声的添加与去除方法。

实验环境

Python

实验内容

1. 图像中值滤波处理

中值滤波是一种非线性滤波方法,特别适合去除椒盐噪声。以下是使用Python实现中值滤波的代码示例:

from scipy import ndimage
from skimage import data, util
from matplotlib import pyplot as plt

img = data.astronaut()[:,:,0]
noise_img = util.random_noise(img, mode='s&p', seed=None, clip=True)
n = 3
new_img = ndimage.median_filter(noise_img, (n, n))

plt.figure()
plt.imshow(img, cmap='gray')
plt.figure()
plt.imshow(noise_img, cmap='gray')
plt.figure()
plt.imshow(new_img, cmap='gray')

2. 最大值和最小值滤波处理

最大值滤波和最小值滤波分别用于增强图像的亮部和暗部特征。以下是使用Python实现最大值和最小值滤波的代码示例:

from scipy import ndimage
from skimage import data, util
from matplotlib import pyplot as plt

img = data.astronaut()[:,:,0]
pepper_img = util.random_noise(img, mode='pepper', seed=None, clip=True)
salt_img = util.random_noise(img, mode='salt', seed=None, clip=True)
n = 3
max_img = ndimage.maximum_filter(pepper_img, (n, n))
min_img = ndimage.maximum_filter(salt_img, (n, n))

plt.figure()
plt.imshow(img, cmap='gray')
plt.figure()
plt.imshow(min_img, cmap='gray')
plt.figure()
plt.imshow(max_img, cmap='gray')

3. 多种滤波方法对比

读入camera图像,添加椒盐噪声,分别采用高斯滤波、中值滤波、最大值滤波、最小值滤波进行滤波处理,并显示滤波结果。

from skimage import data, util
from matplotlib import pyplot as plt
from scipy import ndimage
import numpy as np
import math

img = data.camera()
noise_img = util.random_noise(img, mode='s&p', seed=None, clip=True)
n = 3
gauss_img = ndimage.gaussian_filter(noise_img, (n, n))
med_img = ndimage.median_filter(noise_img, (n, n))
max_img = ndimage.maximum_filter(noise_img, (n, n))
min_img = ndimage.maximum_filter(noise_img, (n, n))

plt.figure()
plt.imshow(img, cmap='gray')
plt.figure()
plt.imshow(gauss_img, cmap='gray')
plt.figure()
plt.imshow(med_img, cmap='gray')
plt.figure()
plt.imshow(min_img, cmap='gray')
plt.figure()
plt.imshow(max_img, cmap='gray')

4. 滤波效果评估

通过计算PSNR值来比较不同滤波方法的效果。

from skimage.metrics import peak_signal_noise_ratio as compare_psnr

psnr1 = compare_psnr(img, gauss_img*255)
psnr2 = compare_psnr(img, med_img*255)
psnr3 = compare_psnr(img, max_img*255)
psnr4 = compare_psnr(img, min_img*255)

print("高斯滤波", psnr1)	
print("中值滤波", psnr2)
print("最大值滤波", psnr3)
print("最小值滤波", psnr4)

最终结果显示,中值滤波的效果最好。

实验小结

图像滤波实验是一个涉及图像处理和计算机视觉的实验,其主要目标是去除图像中的噪声、平滑图像以及提取图像中的特征。高斯滤波器可以平滑图像,但可能会模糊边缘;中值滤波器对椒盐噪声有很好的效果,但可能会导致图像变得模糊;而最大滤波、最小滤波可以增强边缘,但可能会增加噪声。通过实验比较,中值滤波在去除椒盐噪声方面效果最佳。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号