使用 numpy 进行高效数组数据处理
创作时间:
作者:
@小白创作中心
使用 numpy 进行高效数组数据处理
引用
搜狐
1.
https://m.sohu.com/a/807523954_121484799/?pvid=000115_3w_a
在数据科学、工程计算和机器学习等领域,处理大规模数组数据是常见的需求。
numpy是 Python 中最为流行的科学计算库之一,专门为高效处理数组和矩阵数据而设计。它提供了丰富的数学函数和数组操作功能,是实现复杂数据分析和计算的基础工具。本文将介绍numpy的基本操作,并展示如何使用它来处理数组数据。
一、numpy 的安装与导入
在开始使用 numpy 之前,首先确保已安装该库。你可以使用以下命令通过 pip 进行安装:
pip install numpy
安装完成后,使用以下代码导入 numpy 库:
import numpy as np
导入后,你可以使用 np 前缀来调用 numpy 提供的各种函数和方法。
二、数组的创建与基本属性
在 numpy 中,最基本的结构是 ndarray(N-dimensional array),即多维数组。你可以通过多种方式创建数组:
# 从列表创建数组
a = np.array([1, 2, 3])
print(a)
# 创建全零数组
b = np.zeros((3, 4))
print(b)
# 创建全一数组
c = np.ones((2, 3, 4), dtype=np.int16) # dtype 可以指定数据类型
print(c)
# 创建等差数列
d = np.arange(10, 25, 5)
print(d)
# 创建等间隔数列
e = np.linspace(0, 2, 9) # 生成从0到2的9个等间隔数
print(e)
# 创建单位矩阵
f = np.eye(4, 4)
print(f)
# 创建随机数数组
g = np.random.random((2, 2))
print(g)
查看数组的属性:
a = np.arange(24)
a = a.reshape(2, 3, 4)
print(a.ndim) # 数组维度
print(a.shape) # 每个维度上的大小
print(a.size) # 数组元素总数
print(a.dtype) # 数组元素的数据类型
print(a.itemsize) # 每个元素的字节大小
print(a.data) # 数组元素的内存地址
三、数据类型转换
numpy 支持多种数据类型,可以使用 astype() 方法进行类型转换:
fg = np.array([1.2, 2.3, 3.4, 4.5])
print(fg.dtype)
fh = fg.astype(np.int32)
print(fh.dtype)
四、数组运算
numpy 支持数组间的算术运算:
a = np.array([10, 20, 30, 40])
b = np.arange(4)
c = a - b
print(c)
b ** 2
print(b)
10 * np.sin(a)
print(a)
a < 35
print(a)
五、数组的索引与切片
numpy 数组支持多维索引和切片操作:
a = np.arange(10) ** 3
print(a)
def f(x, y):
return 10 * x + y
b = np.fromfunction(f, (5, 4), dtype=int)
print(b)
c = np.array([[[ 0, 1, 2],
[ 10, 12, 13]],
[[100, 101, 102],
[110, 112, 113]]])
print(c)
六、数组的拼接与分割
numpy 提供了多种数组拼接和分割的方法:
a = np.floor(10 * np.random.random((2, 2)))
b = np.floor(10 * np.random.random((2, 2)))
print(np.vstack((a, b))) # 垂直堆叠
print(np.hstack((a, b))) # 水平堆叠
print(np.column_stack((a, b))) # 按列堆叠,等价于hstack
print(np.row_stack((a, b))) # 按行堆叠,等价于vstack
print(np.r_[1:4, 0, 4]) # 使用r_进行数组拼接
七、数组变形
numpy 支持数组的变形操作:
a = np.floor(10 * np.random.random((2, 12)))
print(np.hsplit(a, 3)) # 水平分割为3个子数组
print(np.hsplit(a, (3, 4))) # 在第3和第4列进行分割
八、随机数生成
numpy 提供了丰富的随机数生成函数:
print(np.random.normal(size=(2, 3))) # 生成标准正态分布随机数
print(np.random.normal(5, 10, size=(2, 3))) # 生成均值为5,标准差为10的正态分布随机数
print(np.random.randint(10)) # 生成一个0到10之间的整数
print(np.random.randint(0, 10, size=(2, 5))) # 生成一个2x5的随机整数数组
print(np.random.choice([1, 3, 5, 7, 9])) # 从给定数组中随机选择一个元素
print(np.random.choice([1, 3, 5, 7, 9], size=3)) # 从给定数组中随机选择3个元素
print(np.random.choice([1, 3, 5, 7, 9], size=(3, 5))) # 生成一个3x5的随机选择数组
通过以上介绍,你可以看到 numpy 提供了非常丰富的数组操作功能,能够满足各种科学计算和数据分析的需求。掌握 numpy 的基本操作是学习数据科学和机器学习的重要一步。
热门推荐
如何评估小区的环境质量?怎样判断小区环境的舒适度?
闽江学院怎么样?优势专业有哪些?
如何改善个人财运并吸引财富的方法 什么方法可以催旺个人财运
最受欢迎的五款正宗蜂蜜推荐,纯正无添加!
法国发展无人反水雷技术,全面形成“防区外”反水雷作战能力
IGBT双脉冲测试原理与解决方案
A股大盘涨跌与经济关系的探讨:A股市场走势受宏观经济影响分析
没喝完的饮料放多久后不能再喝?中农大专家来解答
C语言动态数组开发指南:从入门到实践
贫血药膳食谱配方
初期口腔癌应该怎么治疗
从“微按摩”走向粉碎肿瘤,超声波治病本领有多大
股票退市怎么办,详解股票退市:分类、规则及应对措施
罗大佑:台湾流行音乐教父的传奇人生
汐玥作为女孩名字好吗?汐玥用于女孩名字的寓意
公证费用计算的方法是怎样的?
如何将图片压缩到300K以内?推荐六个简单方便的方法
浅井长政的妻子:阿市夫人
如何将图片压缩到300K以内?推荐六个简单方便的方法
关税壁垒难撼动龙头地位,中国宏桥(1378.HK)有望成资本市场铝业避风港
专家详解:口腔癌早期发现与症状识别
大龄单身被嘲讽?反击话术+心态调整指南
探索历史的多维视角:阅读技巧与思维方式的结合之道
道家呼吸吐纳法在日常生活中的实用技巧
典型V2X场景的仿真模拟实现-绿波车速引导
“干噎酸奶”除了不好吞,还是有点好处的!吃它需注意这几点
如何在美国留学中学习法语的最佳方法
学习Abaqus之前要学习哪些理论知识吗?有限元仿真必学的5个理论知识
酒后吐真言是真的吗?
余秋雨普洱茶品鉴秘诀:详解三大选购与品饮基本原则