问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

Yolov5 激活函数SiLU

创作时间:
作者:
@小白创作中心

Yolov5 激活函数SiLU

引用
1
来源
1.
https://www.cnblogs.com/wllwqdeai/p/18277135

YOLOv5-v6.0中使用的激活函数是SiLU。SiLU(Sigmoid Linear Unit)激活函数也被称为 Swish 激活函数,它是 Google Brain 在 2017 年引入的一种自适应激活函数。

Swish 函数的定义如下:
f(x) = x * sigmoid(x)
其中 sigmoid(x) 是标准的 sigmoid 函数,它的值在 0 和 1 之间。Swish 函数的特性包括非线性,连续可导,并且在负无穷到正无穷的范围内都有定义。

Swish 函数在实践中已经证明了其有效性,特别是在深度神经网络中。它既有 ReLU(Rectified Linear Unit)激活函数的一些优点(例如,能够缓解梯度消失问题),又能解决 ReLU 函数的一些缺点(例如,ReLU 函数不是零中心的,且在负数部分的梯度为零)。此外,Swish 函数还是平滑函数,这意味着它在整个定义域内都有导数,这有利于优化。

SiLU激活函数的详细描述如下:

  • 相对于ReLU激活函数,SiLU在x轴的负半轴有一段向下的曲线。
  • 在正数区域内,SiLU 函数的输出与 ReLU 函数的输出相同。
  • 在负数区域内,SiLU 函数的输出与 sigmoid 函数的输出相同。
  • SiLU 函数在整个定义域内都是可微的,这使得在反向传播过程中的梯度计算更加稳定。
  • SiLU函数不是单调递增的,而是在x≈−1.28时达到全局最小值−0.28,这可以起到一个隐式正则化的作用,抑制过大的权重。

本文原文来自博客园

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号