问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

Kaggle爆文:一个框架解决几乎所有机器学习问题

创作时间:
作者:
@小白创作中心

Kaggle爆文:一个框架解决几乎所有机器学习问题

引用
CSDN
1.
https://m.blog.csdn.net/2401_86401589/article/details/142068192

在数据科学领域,数据科学家往往将60-70%的时间用于数据清洗和算法应用。本文将介绍一个框架,帮助你系统地解决Kaggle上的机器学习问题。

什么是 Kaggle?

Kaggle是一个数据科学竞赛的平台,很多公司会发布一些接近真实业务的问题,吸引爱好数据科学的人来一起解决,可以通过这些数据积累经验,提高机器学习的水平。

应用算法解决 Kaggle 问题,一般有以下几个步骤:

  1. 识别问题
  2. 分离数据
  3. 构造提取特征
  4. 组合数据
  5. 分解
  6. 选择特征
  7. 选择算法进行训练

当然,工欲善其事,必先利其器,要先把工具和包都安好。

最方便的就是安装 Anaconda,这里面包含大部分数据科学所需要的包,直接引入就可以了,常用的包有:

  • pandas:常用来将数据转化成 dataframe 形式进行操作
  • scikit-learn:里面有要用到的机器学习算法模型
  • matplotlib:用来画图
  • 以及 xgboost,keras,tqdm 等。

第一步:识别问题

在这一步先明确这个问题是分类还是回归。通过问题和数据就可以判断出来,数据由 X 和 label 列构成,label 可以一列也可以多列,可以是二进制也可以是实数,当它为二进制时,问题属于分类,当它为实数时,问题属于回归。

第二步:分离数据

为什么需要将数据分成两部分?

用 Training Data 来训练模型,用 Validation Data 来检验这个模型的表现,不然的话,通过各种调节参数,模型可以在训练数据集上面表现的非常出色,但是这可能会是过拟合,过拟合就是太依赖现有的数据了,拟合的效果特别好,但是只适用于训练集,以致于来一个新的数据,就不知道该预测成什么了。所以需要有 Validation 来验证一下,看这个模型是在那里自娱自乐呢,还是真的表现出色。

在 scikit learn 包里就有工具可以帮你做到这些:

  • 分类问题用 StrtifiedKFold
    from sklearn.cross_validation import StratifiedKFold
    
  • 回归问题用 KFold
    from sklearn.cross_validation import KFold
    

第三步:构造特征

这个时候,需要将数据转化成模型需要的形式。数据有三种类型:数字,类别,文字。当数据是类别的形式时,需要将它的每一类提取出来作为单独一列,然后用二进制表示每条记录相应的值。例如:

record 1: 性别 女
record 2:性别 女
record 3:性别 男

转化之后就是:

女 男
record 1: 1 0
record 2:1 0
record 3:0 1

这个过程 sklearn 也可以帮你做到:

from sklearn.preprocessing import LabelEncoder

或者

from sklearn.preprocessing import OneHotEncoder

第四步:组合数据

处理完 Feature 之后,就将它们组合到一起。

如果数据是稠密的,就可以用 numpy 的 hstack:

import numpy as np
X = np.hstack((x1, x2, …))

如果是稀疏的,就用 sparse 的 hstack:

from scipy import sparse
X = sparse.hstack((x1, x2, …))

组合之后,就可以应用以下算法模型:

  • RandomForestClassifier
  • RandomForestRegressor
  • ExtraTreesClassifier
  • ExtraTreesRegressor
  • XGBClassifier
  • XGBRegressor

但是不能应用线性模型,线性模型之前需要对数据进行正则化而不是上述预处理。

第五步:分解

这一步是为了进一步优化模型,可以用以下方法:

PCA:Principal components analysis,主成分分析,是一种分析、简化数据集的技术。用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征。

from sklearn.decomposition import PCA

对于文字数据,在转化成稀疏矩阵之后,可以用 SVD

from sklearn.decomposition import TruncatedSVD

SVD:Singular Value Decomposition,奇异值分解,是线性代数中一种重要的矩阵分解,它总能找到标准化正交基后方差最大的维度,因此用它进行降维去噪。

第六步:选择特征

当特征个数越多时,分析特征、训练模型所需的时间就越长,容易引起“维度灾难”,模型也会越复杂,推广能力也会下降,所以需要剔除不相关或亢余的特征。

常用的算法有完全搜索,启发式搜索,和随机算法。

例如,Random Forest:

from sklearn.ensemble import RandomForestClassifier

或者 xgboost:

import xgboost as xgb

对于稀疏的数据,一个比较有名的方法是 chi-2:

最后的话

本文介绍了如何使用一个框架来解决Kaggle上的机器学习问题,从数据清洗到模型训练的整个流程都给出了详细的解释和代码示例。希望这些内容能帮助你更好地理解和应用机器学习算法。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号