电赛必备——PID控制算法详解
创作时间:
作者:
@小白创作中心
电赛必备——PID控制算法详解
引用
CSDN
1.
https://m.blog.csdn.net/jjynn/article/details/140936951
PID控制算法是电子工程和自动化领域中一种非常重要的控制算法,广泛应用于各种需要精确控制的场景。本文将详细介绍PID算法的基本原理、参数设置以及两种主要的实现方式(位置式和增量式),帮助读者快速掌握这一经典算法。
PID算法简介
PID算法,即“比例(Proportional)、积分(Integral)、微分(Derivative)”控制算法,是一种常见的保持系统稳定的控制算法。
- Kp比例增益
- Kp比例控制考虑当前误差,误差值和一个正值的常数Kp(表示比例)相乘。例如,在水温控制中,当水温与目标温度的差距不大时,就让加热器“轻轻地”加热;如果温度降低了很多,就让加热器“稍稍用力”加热;如果当前温度比目标温度低得多,就让加热器“开足马力”加热。实际写程序时,就让偏差(目标减去当前)与调节装置的“调节力度”,建立一个一次函数的关系,就可以实现最基本的“比例”控制。Kp越大,调节作用越激进;Kp调小会让调节作用更保守。
- Kd微分增益
- Kd微分控制考虑将来误差,计算误差的一阶导数,并和一个正值的常数Kd相乘。有了P的作用,不难发现,只有P好像不能让平衡车站起来,水温也控制得晃晃悠悠,好像整个系统不是特别稳定,总是在“抖动”。D的作用就是让物理量的速度趋于0,只要什么时候,这个量具有了速度,D就向相反的方向用力,尽力刹住这个变化。Kd参数越大,向速度相反方向刹车的力道就越强。
- Ki积分增益
- Ki积分控制考虑过去误差,将误差值过去一段时间和(误差和)乘以一个正值的常数Ki。还是以热水为例,假如有个人把加热装置带到了非常冷的地方,开始烧水了,需要烧到50℃,在P的作用下,水温慢慢升高,直到升高到45℃时,他发现了一个不好的事情:天气太冷,水散热的速度,和P控制的加热的速度相等了。设置一个积分量,只要偏差存在,就不断地对偏差进行积分(累加),并反应在调节力度上。这样一来,即使45℃和50℃相差不是太大,但是随着时间的推移,只要没达到目标温度,这个积分量就不断增加,系统就会慢慢意识到:还没有到达目标温度,该增加功率啦。到了目标温度后,假设温度没有波动,积分值就不会再变动,这时,加热功率仍然等于散热功率,但是,温度是稳稳的50℃。Ki的值越大,积分时乘的系数就越大,积分效果越明显。所以,I的作用就是,减小静态情况下的误差,让受控物理量尽可能接近目标值。I在使用时还有个问题:需要设定积分限制,防止在刚开始加热时,就把积分量积得太大,难以控制。
位置式PID算法
位置式PID算法是最常见的PID实现方式,其输出直接取决于当前误差、积分误差和微分误差。
位置式PID代码实现
/**
* @brief 位置PID算法实现
* @param actual_val:实际值
* @note 无
* @retval 通过PID计算后的输出
*/
float Speed_pid_realize(_pid *pid, float actual_val)
{
/*计算目标值与实际值的差值*/
pid->err = pid->target_val - actual_val;
pid->integral += pid->err; //误差累积
/*积分限幅*/
if (pid->integral >= 1000) {
pid->integral = 1000;
} else if (pid->integral < -1000) {
pid->integral = -1000;
}
/*PID算法实现*/
pid->actual_val = pid->Kp * pid->err + pid->Ki * pid->integral + pid->Kd * (pid->err - pid->err_last);
/*误差传递*/
pid->err_last = pid->err;
/*对输出PWM限幅*/
if (pid->actual_val > 1000) {
pid->actual_val = 1000.0;
}
if (pid->actual_val < 0) {
pid->actual_val = 0.0;
}
/*返回比较值*/
return pid->actual_val;
}
增量式PID算法
增量式PID算法是另一种常见的PID实现方式,其输出是控制量的增量,而不是绝对值。其中u(k) 代表PID输出,Kp代表比例系数,Ki代表积分系数,Kd代表微分系数,e(k)代表目标值和当前值的误差,e(i)代表累计的误差,e(k)-e(k-1)代表本次误差 - 上次误差。
增量式的Kp就是位置式的Kd,Ki就是位置式的Kp,Kd就是位置式的Ki,所以知道了位置式PID,然后再交换一下位置就是增量式PID。
增量式PID代码实现
/**
* @brief 增量式PID算法实现
* @param actual_val:实际值
* @note 无
* @retval 通过PID计算后的输出
*/
float pid_realize(_pid *pid, float actual_val)
{
/*计算目标值与实际值的差值*/
pid->err = pid->target_val - actual_val;
/*PID算法实现*/
pid->actual_val += pid->Kp * (pid->err - pid->err_next)
+ pid->Ki * pid->err
+ pid->Kd * (pid->err - 2 * pid->err_next + pid->err_last);
/*传递误差*/
pid->err_last = pid->err_next;
pid->err_next = pid->err;
/*返回比较值*/
return pid->actual_val;
}
PID结构体定义
typedef struct
{
float target_val; //目标值
float actual_val; //实际值
float err; //误差
float err_last; //上一次误差
float Kp, Ki, Kd; //比例系数 积分系数 微分系数
float integral; //积分值
}_pid;
增量式与位置式区别
- 增量式算法不需要做累加,控制量增量的确定仅与最近几次偏差采样值有关,计算误差对控制量计算的影响较小。而位置式算法(全量计算)要用到过去偏差的累加值,容易产生较大的累加误差,对系统影响很大。
- 增量式PID控制输出的是控制量增量,并无积分作用,因此该方法适用于执行机构带积分部件的对象,如步进电机等,而位置式PID适用于执行机构不带积分部件的对象,如电液伺服阀。
- 在进行PID控制时,位置式PID需要有积分限幅和输出限幅,而增量式PID只需输出限幅。
热门推荐
孔子教你如何拥有“山不让尘”的心态
“关照”一词背后藏玄机?它从何而来?探秘“天下第一雄关”嘉峪关
构建具有丝绸之路特色的现代博物馆体系——甘肃10家国家一级博物馆探访
黄河之滨也很美:夜游烟火兰州,尽显丝路风华
一毛钱硬币上的兰花,竟然藏着这样的文化密码!
1962年背绿水印1角:一张纸币的收藏传奇
央视新生代主持人谁能成为下一个“孩子王”?
《主持人大赛》揭秘新生代主持人语言魅力
央视新生代主持人张苧月和张玉洁:新面孔带来新气象
张良教你如何在游戏中完美克制貂蝉
王者荣耀:貂蝉崛起,谁才是最强克星?
《王者荣耀》最新攻略:张良、东皇太一教你完美克制貂蝉
从哈利波特粉丝到玩家:为新玩家设计《霍格沃茨之遗》
《刀剑神域:碎梦边境》Steam版评测:77%好评率下的优缺点分析
健康科普 | 体检发现胆囊息肉是怎么回事
《花开如梦》定档,董洁张嘉益主演,苏童原著改编,戏骨云集
“漂白”的命案,东北的命运
自制老鼠药风险大,合法灭鼠更安全
如何了解社保的相关操作流程?这些操作流程存在哪些注意事项?
丰巢快递柜超时收费引争议:用户权益与行业发展如何平衡?
快递延误险:你真的需要它吗?
幼鸽饮食大揭秘:专家推荐最佳饲料组合
幼鸽营养秘籍:鸽乳和维诺肉鸽高维的科学搭配
告别肩颈痛:办公桌椅选购全攻略
迈克尔·乔丹教你“山不让尘”
孔子教你如何“山不让尘”
《道德经》教你如何“山不让尘”逆袭人生
曹缘诠释“山不让尘”:巴黎奥运夺金
中医养生新姿势:告别肩颈酸痛
颈椎病 vs 肩周炎:谁让你脖子痛?