【详细】CNN中的卷积计算是什么-实例讲解
创作时间:
作者:
@小白创作中心
【详细】CNN中的卷积计算是什么-实例讲解
引用
CSDN
1.
https://blog.csdn.net/dbat2015/article/details/140055941
卷积计算是CNN中最基本的计算,它是卷积层最重要的组成部分,下面讲讲CNN的卷积计算过程是什么样的,包括基础卷积计算、多通道卷积计算以及PyTorch中的卷积计算。
一、CNN的基础卷积计算
卷积层是卷积神经网络中最基础的层,基础卷积的计算就是通过一个卷积核对输入进行卷积计算
1.1.一个例子了解CNN的卷积计算是什么
要了解什么是CNN的卷积基础计算,直接通过一个例子来算一算,就一清二楚。
一个卷积计算结果示例如下:
下面详细讲讲上面的卷积结果的具体计算过程:
卷积层中的卷积核就是一个矩阵,直观来看它就是一个窗口,卷积窗口一般为正方形,即长宽一致,
卷积运算通过从左到右,从上往下移动卷积核窗口,将窗口覆盖的每一小块输入进行加权,作为输出
1.2.卷积层的生物意义
卷积核在生物上的意义就相当于动物的眼睛(接受器),
卷积核的大小就相当于眼睛的视野范围(接受野),卷积核的权重就相当于眼睛每一处的接收权重
由于视野有限,所以需要通过逐步移动来查看所有内容,其中眼睛移动的步幅就是卷积的步幅
二、卷积的拓展:多输入通道与多输出通道
2.1.多输入通道卷积
卷积计算支持多通道的输入,当输入为k个通道的时,卷积核为3维矩阵,第3维与输入通道保持一致
2.2.多输出通道卷积
卷积计算也支持多通道输出,需要输出多少个通道,就使用多少个卷积核就可以了
三、卷积的实现
3.1.PyTorch实现卷积计算-例子
PyTorch中使用torch.nn.Conv2d函数来实现卷积的计算
以上述卷积为例,在PyTorch中可以如下实现:
import torch
X = torch.tensor([[[[1,3,1,2],[2,6,8,5],[4,2,1,0]]]], dtype=torch.float32) # 输入数据
c = torch.nn.Conv2d(1, 1, kernel_size=(2,2),bias = False) # 初始化卷积类
c.weight.data =torch.tensor([[[[1,2],[2,0]]]], dtype=torch.float32) # 设置权重
out = c(X) # 对输入进行卷积计算
#-------------打印结果-----------------------
print('输入数据:',X)
print('卷积核:',c.weight.data)
print('卷积结果:',out)
运行结果如下:
3.2.Conv2d函数的使用方法
Conv2d函数的完整入参如下:
torch.nn.Conv2d(in_channels
,out_channels
,kernel_size
,stride = 1
,padding = 0
,dilation = 1
,groups = 1
,bias = True
,padding_mode = 'zeros'
,device = None
,dtype = None)
各个参数的解释如下:
in_channels (int) :图象的通道数,也就是决定卷积核的通道数
out_channels (int) :卷积输出的通道数,也就是用多少个卷积核
kernel_size (int/tuple):卷积核的大小,输入5指5*5的卷积核,输入(3,4)指3*4的卷积核
stride (int/tuple):卷积核的步距
padding(int/tuple/str):边缘填充的象素数,5指上下左右都补充5个象素,(3,4)代表上下补充3象素,左右补3象素
padding_mode (str) :象素填充的方式,可选择项- 'zeros', 'reflect', 'replicate','circular'
dilation(int/tuple):"扩张卷积"的专用参数-扩张率,控制kernel各点之间的间隔数量
groups(int):Number of blocked connections from input channels to output channels. Default: 1
bias(bool):是否对卷积结果添加偏置
*详细可进一步查看《Conv2d的官方说明》
热门推荐
详解子平法中,木火交辉和金水相涵的详细运用
果干的热量高吗?选对制作方法,5 大好处有助于减重
幽门螺杆菌 (HP) ——知“幽”理、解“幽”愁
OpenAI CEO预测:通用人工智能五年内可能出现,社会影响或小于预期
《少年白马醉春风》:少年侠气 春风十里
警惕!饮水机背后的“健康杀手”与预防措施
中国武侠文化再掀国际热潮 爱奇艺独播《目中无人》系列电影入围巴黎诡奇电影节
什么是硬件加速GPU调度?如何启用它?
鲜榨橙汁的魔法:解锁健康鲜果饮品的秘密
遗体捐献:使用后的遗体是如何处理的,会被火化还是被丢弃?
辟谷期间能否饮用红糖水?医生的专业解答
诈骗罪的民事赔偿怎么起诉
支链氨基酸的正确服用方法有哪些
奥运巡礼:中国蹦床队全力备战巴黎奥运会,目标“保一争二”
一省一辑+一城多品,《中国美食大会》全景呈现中华美味
发现墙体开裂应该怎么修复?
全黑色PPT背景的设计技巧与配色方案
“View” 到底算不算可数名词?揭秘英文中的计数秘密!
国漫双王炸:《牧神记》与《凡人修仙传》稳坐B站宝座
心理史学:解读历史人物的内心世界
如何评估自己在使用高效沟通技巧和方法上的进步?
中性笔,3种常见的笔芯规格,你用的哪一种?
2024年服务器资源管理及成本优化策略
怎么保养水晶?教你清除水晶污渍,让宝贝水晶常保光彩
成都青城山简介:道教圣地与自然奇景的奇幻之旅
支气管炎患者饮食指南:这些食物有助于缓解症状
血糖异常要小心,可能是糖尿病
牙齿变长是什么原因?牙龈萎缩预防和恢复方法有哪些
甲亢患者注意,这些食物不能或不宜食用!
耶稣:基督教的核心人物