【详细】CNN中的卷积计算是什么-实例讲解
创作时间:
作者:
@小白创作中心
【详细】CNN中的卷积计算是什么-实例讲解
引用
CSDN
1.
https://blog.csdn.net/dbat2015/article/details/140055941
卷积计算是CNN中最基本的计算,它是卷积层最重要的组成部分,下面讲讲CNN的卷积计算过程是什么样的,包括基础卷积计算、多通道卷积计算以及PyTorch中的卷积计算。
一、CNN的基础卷积计算
卷积层是卷积神经网络中最基础的层,基础卷积的计算就是通过一个卷积核对输入进行卷积计算
1.1.一个例子了解CNN的卷积计算是什么
要了解什么是CNN的卷积基础计算,直接通过一个例子来算一算,就一清二楚。
一个卷积计算结果示例如下:
下面详细讲讲上面的卷积结果的具体计算过程:
卷积层中的卷积核就是一个矩阵,直观来看它就是一个窗口,卷积窗口一般为正方形,即长宽一致,
卷积运算通过从左到右,从上往下移动卷积核窗口,将窗口覆盖的每一小块输入进行加权,作为输出
1.2.卷积层的生物意义
卷积核在生物上的意义就相当于动物的眼睛(接受器),
卷积核的大小就相当于眼睛的视野范围(接受野),卷积核的权重就相当于眼睛每一处的接收权重
由于视野有限,所以需要通过逐步移动来查看所有内容,其中眼睛移动的步幅就是卷积的步幅
二、卷积的拓展:多输入通道与多输出通道
2.1.多输入通道卷积
卷积计算支持多通道的输入,当输入为k个通道的时,卷积核为3维矩阵,第3维与输入通道保持一致
2.2.多输出通道卷积
卷积计算也支持多通道输出,需要输出多少个通道,就使用多少个卷积核就可以了
三、卷积的实现
3.1.PyTorch实现卷积计算-例子
PyTorch中使用torch.nn.Conv2d函数来实现卷积的计算
以上述卷积为例,在PyTorch中可以如下实现:
import torch
X = torch.tensor([[[[1,3,1,2],[2,6,8,5],[4,2,1,0]]]], dtype=torch.float32) # 输入数据
c = torch.nn.Conv2d(1, 1, kernel_size=(2,2),bias = False) # 初始化卷积类
c.weight.data =torch.tensor([[[[1,2],[2,0]]]], dtype=torch.float32) # 设置权重
out = c(X) # 对输入进行卷积计算
#-------------打印结果-----------------------
print('输入数据:',X)
print('卷积核:',c.weight.data)
print('卷积结果:',out)
运行结果如下:
3.2.Conv2d函数的使用方法
Conv2d函数的完整入参如下:
torch.nn.Conv2d(in_channels
,out_channels
,kernel_size
,stride = 1
,padding = 0
,dilation = 1
,groups = 1
,bias = True
,padding_mode = 'zeros'
,device = None
,dtype = None)
各个参数的解释如下:
in_channels (int) :图象的通道数,也就是决定卷积核的通道数
out_channels (int) :卷积输出的通道数,也就是用多少个卷积核
kernel_size (int/tuple):卷积核的大小,输入5指5*5的卷积核,输入(3,4)指3*4的卷积核
stride (int/tuple):卷积核的步距
padding(int/tuple/str):边缘填充的象素数,5指上下左右都补充5个象素,(3,4)代表上下补充3象素,左右补3象素
padding_mode (str) :象素填充的方式,可选择项- 'zeros', 'reflect', 'replicate','circular'
dilation(int/tuple):"扩张卷积"的专用参数-扩张率,控制kernel各点之间的间隔数量
groups(int):Number of blocked connections from input channels to output channels. Default: 1
bias(bool):是否对卷积结果添加偏置
*详细可进一步查看《Conv2d的官方说明》
热门推荐
火腿肠的生产工艺流程及操作要点
北京等地街頭「毛衣樹」爆紅 吸引網友拍照打卡
如何计算住房面积?香港买房面积计算的注意事项是什么?
最高降57分,仅4专业分数线上涨,清华大学两年考研复试线对比
如何在市场开拓的无声战场中赢得主动权?
标准版和豪华版的区别
揭秘听音法漏水检测仪背后的声学奥秘
缝纫机针的规格、安装方法以及常见故障解决方法的介绍
探讨现代教育中创新人才的培养策略
淋巴瘤的筛查:早期发现与提高治愈率
淋巴瘤的治疗方法全解析
亲生子女和非亲生子女的继承权
离婚后发现子女非亲生是否能请求损害赔偿
海南自贸港封关在即:免税产业迎政策红利 步入快车道
穿越千年,触碰历史!洛阳研学攻略全览
电机降噪简易方法,有效降低电机噪音的小方法
红盖与黄盖:汾酒包装背后的学问
探秘梨树的生长和特点(从树形、花朵到果实,全方位解析梨树)
双休制度的来龙去脉:从1919年国际公约到1995年中国落地
AI技术如何提升影像修复的效率?
德国探亲签申请材料攻略 - 准备清单,中德双语邀请函模版、签证行程单
申请德国探亲签证都需要准备什么材料
新能源时代,汽车驱动形式真的不重要了吗?
航空医学体检鉴定耳鼻咽喉科常用设备简介
叶绿比火红优化了哪些方面?
如何有效地使用命名规则来提升你的代码质量?
轻断食指南:给身体放个假!
2025年广东高考使用什么卷?广东高考试卷全国几卷
2025年3月破土注意事项详解
白细胞偏低的原因及危害会得什么病