问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

预测值:线性回归

创作时间:
作者:
@小白创作中心

预测值:线性回归

引用
1
来源
1.
https://learn.microsoft.com/zh-cn/training/modules/introduction-machine-learning-models/2-prediction-linear-regression

线性回归是机器学习中最基础也是最重要的模型之一。它通过拟合一条直线来预测变量之间的关系,广泛应用于各种定量预测场景。本文将从最简单的两点连线开始,逐步介绍线性回归的基本原理、目标和评估方法。

也许最简单的机器学习形式是画一条连接两点的线,并预测这种趋势可能会走向何方。但是,如果你有两个以上的点,而这些点没有整齐地排列,又该怎么办呢?如果你有超过两个维度的点呢?这就是使用线性回归的原因。

线性回归通常用于预测依赖于一个或多个“预测因子”(与 $Y$ 正交的一个或多个轴上的值,通常统称为 $X$)的定量“响应”($Y$ 轴上的值)。工作假设是,预测因子和响应之间的关系或多或少是线性的。

线性回归的目标是以最好的方式拟合一条直线,以最小化我们在数据集中观察到的响应与我们的直线(线性近似)预测的响应之间的偏差。评估这种误差最常见的方法称为“最小二乘法”。该方法为,求预测值与实际值之间的差值的平方,然后将整个数据集的所有这些差值平方求和,最后将总和最小化。

从统计学上说,我们可以将响应和预测因子之间的关系表示为:

$Y = B_0 + B_1X + E$

还记得高中几何吗?$B_0$ 是直线的截距,$B_1$ 是其斜率。我们通常将 $B_0$ 和 $B_1$ 作为系数,将 $E$ 作为误差项,表示模型中的误差范围。

让我们用实际数据来练习。(请注意,在这些预测过程中,不会损坏任何方格纸。)

本文原文来自微软官方文档

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号