R语言实现蒙特卡洛模拟算法
创作时间:
作者:
@小白创作中心
R语言实现蒙特卡洛模拟算法
引用
CSDN
1.
https://blog.csdn.net/jd1813346972/article/details/137361592
蒙特卡洛(Monte Carlo)算法,也称为蒙特卡洛方法或统计模拟方法,是一种基于随机采样的数值计算方法。它的基本思想是通过大量的随机采样来估计某个难以直接计算的值,从而得到近似结果。蒙特卡洛方法在各种领域都有广泛的应用,如计算物理、金融工程、统计学、计算机科学等。
蒙特卡洛方法的主要步骤
蒙特卡洛方法的主要步骤如下:
- 定义问题:明确需要求解的问题,确定问题的目标函数或概率分布。
- 生成随机数:根据问题的需要,生成相应分布的随机数或伪随机数。
- 模拟过程:使用生成的随机数模拟问题的随机过程,如物理实验、金融交易等。
- 统计结果:收集模拟过程中的数据,并计算所需的统计量,如平均值、方差等。
- 估计结果:根据统计结果,估计问题的近似解,并给出相应的置信区间或误差分析。
蒙特卡洛方法的优点
蒙特卡洛方法的优点包括:
- 通用性:蒙特卡洛方法适用于各种类型的问题,只要问题可以转化为随机过程进行模拟。
- 灵活性:蒙特卡洛方法可以根据问题的特点进行定制和优化,如采用重要性采样、分层采样等技术提高采样效率。
- 易于实现:蒙特卡洛方法的算法相对简单,易于编程实现和并行化。
蒙特卡洛方法的局限性
蒙特卡洛方法的局限性主要表现在以下三个方面:
- 计算成本:为了得到较为准确的结果,蒙特卡洛方法通常需要大量的采样次数,这可能导致较高的计算成本。
- 收敛速度:蒙特卡洛方法的收敛速度通常与问题的维度和复杂性有关,对于高维或复杂问题,可能需要更长的计算时间。
- 随机性:蒙特卡洛方法的结果受到随机数生成器的影响,不同的随机数序列可能导致结果的波动。因此,在使用蒙特卡洛方法时,需要选择合适的随机数生成器并进行充分的测试。
蒙特卡洛方法的代码实现——基于R
5.1 求圆周率π
运行程序:
library('ggplot2')
f <- function(r){
sqrt(1-r^2)
}
x <- seq(0,1,length=3000)
y <- f(x)
df <- data.frame(x,y)
ggplot(df, mapping = aes(x=x,y=y))+
geom_line()+geom_ribbon(aes(ymin=0, ymax=y, x = x),
fill="red", alpha=0.2)+
geom_hline(yintercept = c(0,1))+geom_vline(xintercept = c(0,1))
##计数函数
MC1 <- function(n){
k <- 0
x <- runif(n, 0, 1)
y <- runif(n, 0, 1) #从已知概率分布中抽样
for (i in 1:n){
if (y[i] < f(x[i]))
k <- k+1
}
k/n #建立所需的统计量
}
4*MC1(10000000)
运行结果:
3.141294
5.2 计算定积分
运行程序:
library('ggplot2')
f <- function(x){
log(1+x)/(1+x^2)
}
x <- seq(0,1,length=50)
y <- f(x)
df <- data.frame(x,y)
ggplot(df, mapping = aes(x=x,y=y))+geom_line()
ggplot(df, mapping = aes(x=x,y=y))+
geom_line()+geom_ribbon(aes(ymin=0, ymax=y, x = x),
fill="red", alpha=0.2)+
geom_hline(yintercept = c(0,1))+geom_vline(xintercept = c(0,1))
##计数函数
MC1 <- function(n){
k <- 0
x <- runif(n, 0, 1)
y <- runif(n, 0, 1) #从已知概率分布中抽样
for (i in 1:n){
if (y[i] < f(x[i]))
k <- k+1
}
k/n #建立所需的统计量
}
MC1(10000000)
运行结果:

0.2721784
该积分正确结果为:0.27057,蒙特卡洛模拟结果逼近正确结果。
5.3 蒙特卡罗算法在项目管理中的应用
运行程序:
x <- seq(7,35,length = 100)
y1 <- dnorm(x, mean = 14, sd = 2)#dnorm正态分布概率密度函数值
y2 <- dnorm(x, mean = 23, sd = 3)
y3 <- dnorm(x, mean = 22, sd = 4)
data <- data.frame(x,y1,y2,y3)
colnames(data) <- c("x","y1","y2","y3")
ggplot(data)+
geom_line(aes(x=x,y=y1), color = "red")+
geom_line(aes(x=x,y=y2), color = "blue")+
geom_line(aes(x=x,y=y3), color = "green")+
theme_classic()
#构建蒙特卡罗模拟
MC2 <- function(n){
y1 <- rnorm(n , mean = 14, sd = 2) #从已知概率分布中抽样
y2 <- rnorm(n , mean = 23, sd = 3)
y3 <- rnorm(n , mean = 22, sd = 4)
y <- y1 + y2 + y3 #构造问题的概率模型
result <- c(mean(y),var(y)) #建立所需的统计量,即样本均值和样本方差
return(result)
}
result <- MC2(100000)
print(result)
运行结果:
[1] 58.96622 28.98157
运行程序:
x <- seq(7,80,length = 1000)
data <- data.frame(x,y1 <- dnorm(x, mean = 14, sd = 2),
dnorm(x, mean = 23, sd = 3),
dnorm(x, mean = 22, sd = 4),
dnorm(x, mean = result[1],
sd = result[2]^0.5))
colnames(data) <- c("x","y1","y2","y3","y")
ggplot(data)+
geom_line(aes(x=x,y=y1), color = "red")+
geom_line(aes(x=x,y=y2), color = "blue")+
geom_line(aes(x=x,y=y3), color = "green")+
geom_line(aes(x=x,y=y))+
theme_classic()
运行结果:
热门推荐
2025年2月中国100个机场旅客吞吐量排行榜
如何客观评价光电企业的技术创新和市场竞争力?这种评价对行业投资发展有什么影响?
流感病毒A型IgM抗体阳性:症状、治疗与预防全攻略
如何根据宏观经济指标调整投资组合
中式书房装修技巧:营造典雅静谧的阅读空间
2024·百姓身边科技事丨中医诊疗增添“科技智慧”
运势网站测算结果真的准确吗?
政府上班时间哪个部门最晚?
上海中学举行2024年度第一学期休业式
2024-2025年建筑钢材重点省份年度报告—新疆
寿山石三坑分类
欢乐斗地主游戏规则详解
灰指甲前期是什么样子
皮肤问题全解析:从敏感肌到痘痘肌,专家教你科学护肤
黑色幽默的深入探讨
噬血细胞综合征的一线治疗方案是什么?
科学性审查——确保做有意义的临床研究
麻黄连翘赤小豆汤:治疗皮肤病的中医经典方剂
股票卖出未报的含义是什么?这一状态如何影响交易执行?
如何自动压缩数据库日志
抗战佳片!《捍卫者》讲述淞沪会战故事
火影忍者中的创世之神:大筒木辉夜
猫咪分娩的全面指南:如何为你的猫咪提供生育环境与护理
模块通用、追求复用,重型火箭踏上新征途
银行的证券服务包括哪些内容?
墓库的深层次运用:八字及大运流年墓库分析
高新技术企业认定 “科技成果” 申请材料审核要点及易错点
央视纪录片的镜头下,构图是完成画面的重要环节
嘴唇干裂起皮怎么办?全方位解决方案来了
如何处理产权到期的问题?这种处理方式存在哪些挑战?