问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

基于深度学习的图像去雾算法ChaIR实践指南

创作时间:
作者:
@小白创作中心

基于深度学习的图像去雾算法ChaIR实践指南

引用
CSDN
1.
https://blog.csdn.net/qq_40035462/article/details/141138425

本文介绍一个去雾算法ChaIR的使用方法,可以完成图像去雾,也可以用于图像去雨、去噪音等任务。本文不涉及论文原理,只包含源代码的跑通和使用。

先展示一下效果:

论文:Exploring the potential of channel interactions for image restoration
代码地址:https://github.com/c-yn/ChaIR/tree/main/Dehazing

本文的代码及数据集、训练好的权重:图像去雾代码-SOTS划分好的8:2数据集-训练好的去雾权重-包含推理代码

一、准备数据集

作者在github中给出了去雾数据集reside-indoor,reside-outdoor ,SOTS的地址,因为reside-indoor/outdoor太大了,本文介绍SOTS数据集的使用方法。

数据集地址:

这里请注意,使用SOTS需要将其转换为如下格式:

SOTS数据集也有indoor和outdoor,本文只使用outdoor,本文将SOTS outdoor数据集按照8:2划分训练集和测试集,并提供转换好的数据连接:SOTS数据集8:2划分训练和验证集,可用于训练去雾模型

准备好了数据集之后,按照如下目录结构放置即可:

至此数据集准备完成。

二、安装环境

接下来安装conda环境,首先下载代码:

git clone https://github.com/c-yn/ChaIR.git
cd ChaIR  

创建虚拟环境:

conda create -n chair python=3.10
conda activate chair   

按照官网教程安装pytorch,我安装的是torch 2.3.1 cuda118(可以跳过):

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia  

安装pytorch-gradual-warmup-lr:

cd pytorch-gradual-warmup-lr
python setup.py install  

后续使用过程中会提示缺少相关库,因为源代码未提供requirements.txt库,缺少的库需要自行安装,本文不做赘述。

三、训练验证

环境安装完成,因为本文只介绍去雾模型,所以进入ChaIR/Dehazing/OTS目录:

cd ChaIR/Dehazing/OTS  

开始训练,如果显存不够,可以降低batch size,我用的rtx3060,我把batch size降低为2:

python main.py --mode train --data_dir  SOTS/outdoor  

训练完成后,results/ChaIR目录的ots里面有权重,如下图:

使用best权重进行验证:

python main.py --data_dir  SOTS/outdoor --test_model  results/ChaIR/ots/Best.pkl  

可以看到我训练的精度:

四、推理

因为ChaIR没有推理代码,所以自己写了一个推理代码进行推理,效果如下图:

原图 标签 ChaIR推理结果(自己的权重)

本文提供训练好的模型和推理代码以及数据集,地址:图像去雾代码-SOTS划分好的8:2数据集-训练好的去雾权重-包含推理代码

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号