深入理解并查集:原理、实现与应用
创作时间:
作者:
@小白创作中心
深入理解并查集:原理、实现与应用
引用
CSDN
1.
https://blog.csdn.net/2302_77582029/article/details/146291059
并查集(Disjoint Set Union, DSU)是一种用于处理不相交集合合并与查询操作的数据结构。它广泛应用于图论、网络连接问题以及动态连通性问题。本文将详细介绍并查集的原理、实现方法、优化技巧以及典型应用场景,帮助读者全面掌握这一重要数据结构。
1. 并查集的定义与原理
1.1 定义
并查集是一种树形数据结构,用于维护一组不相交的集合,支持以下两种操作:
- 查找(Find):确定某个元素所属的集合。
- 合并(Union):将两个集合合并为一个集合。
1.2 核心思想
- 每个集合用一棵树表示,树的根节点作为集合的代表。
- 通过路径压缩和按秩合并优化操作效率。
1.3 示例
假设有5个元素:{0, 1, 2, 3, 4},初始时每个元素都是一个独立的集合:
0 1 2 3 4
执行以下操作:
- Union(0, 1):将0和1合并。
0
|
1
- Union(2, 3):将2和3合并。
2
|
3
- Union(1, 3):将1和3合并。
0
/ \
1 2
|
3
- Find(3):查找3的根节点,结果为0。
2. 并查集的实现
以下是并查集的C++实现代码,包括路径压缩和按秩合并优化。
2.1 代码实现
#include <iostream>
#include <vector>
class DSU {
private:
std::vector<int> parent; // 父节点数组
std::vector<int> rank; // 秩数组(树的高度)
public:
DSU(int n) {
parent.resize(n);
rank.resize(n, 1); // 初始时每个集合的秩为1
for (int i = 0; i < n; ++i) {
parent[i] = i; // 初始时每个节点的父节点是自己
}
}
// 查找操作(带路径压缩)
int find(int x) {
if (parent[x] != x) {
parent[x] = find(parent[x]); // 路径压缩
}
return parent[x];
}
// 合并操作(带按秩合并)
void unionSets(int x, int y) {
int rootX = find(x);
int rootY = find(y);
if (rootX == rootY) return; // 已经在同一集合中
// 按秩合并
if (rank[rootX] > rank[rootY]) {
parent[rootY] = rootX;
} else if (rank[rootX] < rank[rootY]) {
parent[rootX] = rootY;
} else {
parent[rootY] = rootX;
rank[rootX]++;
}
}
// 判断两个元素是否在同一集合中
bool isConnected(int x, int y) {
return find(x) == find(y);
}
};
int main() {
DSU dsu(10);
dsu.unionSets(1, 2);
dsu.unionSets(2, 3);
dsu.unionSets(4, 5);
std::cout << "1 和 3 是否连通: " << (dsu.isConnected(1, 3) ? "是" : "否") << std::endl;
std::cout << "1 和 4 是否连通: " << (dsu.isConnected(1, 4) ? "是" : "否") << std::endl;
return 0;
}
2.2 代码解析
- 初始化:每个元素的父节点是自己,秩为1。
- 查找操作:通过递归找到根节点,并进行路径压缩。
- 合并操作:将两个集合的根节点合并,按秩合并避免树过高。
- 连通性判断:通过查找操作判断两个元素是否在同一集合中。
3. 并查集的应用场景
3.1 图的连通性问题
- Kruskal算法:用于最小生成树中判断边是否会形成环。
- 连通分量:用于统计图中的连通分量数量。
3.2 动态连通性问题
- 网络连接:实时判断两个设备是否连通。
- 社交网络:判断两个人是否属于同一个社交圈子。
3.3 图像处理
- 像素连通性:用于图像分割中判断像素是否属于同一区域。
4. 并查集的优化
4.1 路径压缩
- 在查找操作中,将节点的父节点直接指向根节点,减少后续查找的时间。
- 示例:
查找前:
0
/ \
1 2
/ \
3 4
查找3后:
0
/ | \
1 2 3
\
4
4.2 按秩合并
- 在合并操作中,将较小的树合并到较大的树中,避免树的高度过高。
- 示例:
合并前:
0 2
/ / \
1 3 4
合并后:
0
/ | \
1 2 3
\
4
5. 并查集的时间复杂度
- 查找操作:接近O(1)。
- 合并操作:接近O(1)。
- 总体时间复杂度:O(α(n)),其中α(n)是反阿克曼函数,增长非常缓慢。
6. 总结
并查集是一种高效的数据结构,适用于处理不相交集合的合并与查询问题。通过路径压缩和按秩合并优化,其操作的时间复杂度接近常数级别。掌握并查集的原理和实现方法,可以帮助我们更好地解决实际问题。
热门推荐
癌症筛查:检验科如何成为你的“健康守护”?
衡水累计投资52.9亿元推进大运河文化保护传承利用
骑电动车被汽车撞了怎么处理?这份指南请收好
法兰的分类、使用范围、连接和密封形式及常见故障
每天快走1小时,这些疾病会远离你!
暗黑2重制版更新说明
如何介绍一个主持人团队
Docker和K8S(Kubernetes)集群容器化部署
顶级大佬的投资心得!
工商银行反腐风暴持续,广东省分行原行长黄明祥被开除党籍
上海的十大家常菜,上海人最爱吃的十道家常菜
LAB彩色空间修图法:使用Photoshop Lab模式精细调整图像
英伟达、众擎人形机器人产业链初具规模
孩子的户口可以单独一个本么
宏观经济政策促进东北地区经济高质量发展研究
如何深入分析趋势线并把握市场趋势?这种趋势线分析有哪些应用场景?
科普小贴士:如何避免食物过敏的发生
前驱车和后驱车在日常驾驶中的差异:老司机们的亲身感受
提高考研英语口语的方法
八字日柱丁巳对女性命理有何影响
如何通过手机相机功能测试用例提升摄影技巧?
探究王者荣耀中喷子数量多于其他游戏的原因
现象级热度!B站「黑神话悟空」暴涨7亿流量,霸榜刷屏!
多地公布2025考研成绩查询时间!附查分通道
钢铁股与机器人概念股齐飞,A股市场迎来新热点?
胡椒木盆栽的养殖方法和注意事项
上海“随申办”婚姻登记预约攻略:在线预约、一站式办理全指南
SOLIDWORKS大型装配体优化-3.软件操作篇
肝硬化TIPS手术恢复指南
健康管理观念先行 儿童身高管理有了“指导师”