机器学习中的决定系数(R²):定义、计算及应用
创作时间:
作者:
@小白创作中心
机器学习中的决定系数(R²):定义、计算及应用
引用
CSDN
1.
https://blog.csdn.net/IT_ORACLE/article/details/143624121
决定系数(R²)是机器学习中衡量回归模型预测效果的重要统计指标。它表示模型解释目标变量总变异的程度,数值介于0和1之间,数值越接近1表明模型的解释力越强。本文将从定义、计算步骤、解释意义、优缺点、应用以及与其他误差指标的对比等多个维度对R²进行详细的阐述,并提供Python实现代码和图解示例。
1. 决定系数(R²)的定义和公式
决定系数(R²)的公式如下:
$$
R^2 = 1 - \frac{RSS}{TSS}
$$
其中:
- $y_i$ 是真实值。
- $\hat{y}_i$ 是模型的预测值。
- $\bar{y}$ 是真实值的平均值。
- $RSS$ 是残差平方和 (Residual Sum of Squares)。
- $TSS$ 是总平方和 (Total Sum of Squares)。
从公式可以看出,$R^2$ 表示残差平方和占总平方和的比例。换句话说,$R^2$ 越接近 1,表示模型的预测越接近真实值,模型解释越充分。
2. 决定系数(R²)的计算步骤
计算 $R^2$ 的步骤如下:
- 计算真实值的平均值 $\bar{y}$。
- 计算残差平方和 $RSS$。
- 计算总平方和 $TSS$。
- 计算 $R^2$ 值,即使用公式 $R^2 = 1 - \frac{RSS}{TSS}$。
3. 决定系数(R²)的解释和意义
- 解释度:$R^2$ 值表示自变量解释因变量变异的比例。例如,$R^2 = 0.8$ 表示模型能解释 80% 的目标变量变异。
- 值域:$R^2$ 的取值范围通常为 [0, 1]。0 表示模型无法解释任何目标变量的变异,1 表示模型可以完全解释目标变量的变异。
- 负值的情况:在某些情况下,当模型预测效果极差时(例如,模型欠拟合),$R^2$ 可能为负数。这表示预测值甚至比用平均值预测的效果更差。
4. 决定系数(R²)的优缺点
优点
- 直观解释:$R^2$ 直接表示了模型对目标变量的解释力。
- 适用性广:广泛应用于回归模型的效果评价。
缺点
- 对样本大小敏感:在小样本数据中,$R^2$ 值容易偏高,可能夸大模型的预测效果。
- 对异常值敏感:由于平方的存在,$R^2$ 对异常值敏感,异常值可能会过度影响结果。
- 无法区分方向性:仅仅反映解释力,不反映模型预测的方向性,容易掩盖预测偏差。
5. 决定系数(R²)的应用
在回归分析、机器学习和经济学等领域,$R^2$ 是一种常用的评价指标。其应用场景包括:
- 回归模型效果评价:常用于衡量线性回归、多项式回归等模型的解释力。
- 经济和金融数据分析:例如评估某些经济指标对 GDP 增长的解释力。
- 机器学习模型调优:用于评估模型的拟合程度,帮助选择合适的模型或调参。
6. 决定系数(R²)与其他误差指标的对比
指标 | MAE | RMSE | R² |
|---|---|---|---|
计算方式 | 绝对误差 | 平方误差 | 残差平方和和总平方和之比 |
值域 | 非负值 | 非负值 | [0, 1](可能为负数) |
异常值敏感性 | 低 | 高 | 高 |
解释力 | 表示模型预测误差的均值 | 表示模型预测误差的均值 | 表示模型解释的变异比例 |
7. Python 实现代码
以下是计算 $R^2$ 的 Python 代码:
import numpy as np
def r2_score(y_true, y_pred):
ss_res = np.sum((y_true - y_pred) ** 2)
ss_tot = np.sum((y_true - np.mean(y_true)) ** 2)
return 1 - (ss_res / ss_tot)
# 示例
y_true = np.array([3, -0.5, 2, 7])
y_pred = np.array([2.5, 0.0, 2, 8])
result = r2_score(y_true, y_pred)
print("R^2:", result)
运行结果
R^2: 0.9486081370449679
说明
y_true是真实值的数组,y_pred是预测值的数组。ss_res是残差平方和,表示误差的总量。ss_tot是总平方和,表示目标变量的总变异。1 - (ss_res / ss_tot)得出 $R^2$ 值,表示模型对数据变异的解释程度。
8. 决定系数(R²)图解示例
下面将生成一个包含 $R^2$ 计算图解的图示,以便更清楚地理解 $R^2$ 在模型解释力上的作用。
上图展示了 $R^2$ 的计算过程,其中:
- 蓝色圆点连线表示真实值 $y_i$。
- 红色叉点连线表示模型的预测值 $\hat{y}_i$。
- 每条灰色虚线表示预测值与真实值之间的差距,即残差。
为了更直观地理解 $R^2$,我们可以用一个散点图展示真实值和预测值的分布:
- 绘制真实值与预测值的散点图:展示所有数据点的真实值与预测值之间的差异。
- 展示总平方和 (TSS):每个数据点到真实值均值的垂直线表示目标变量的总变异。
- 展示残差平方和 (RSS):每个数据点到预测值的垂直线表示模型预测误差。
- 理解解释力:图中 $R^2$ 值越大,模型预测值越接近真实值,即解释力越高。
热门推荐
Sybille满天星西比尔:一部科幻电影如何引发哲学思考
为西比尔特里劳妮辩护:探讨其作品的价值和影响
预防维生素缺乏的好办法,就藏在一日三餐里
使用ComfyUI将工装空间毛坯照片转化为高质量效果图的进阶技巧
如何预防脚部容易冻伤
狼牙山五壮士救命恩人余药夫:40多年后的真相披露
电机功率等级国家标准及应用
提高记忆力的有效方法
手撕算法:二叉搜索树的最近公共祖先
博罗医生”亲友献血团“30人接力救患者
带您了解“自体血回输”
矛盾型依恋与原生家庭的羁绊
便秘知识科普——便秘的原因和治疗原则
拉格朗日乘数法的理解
成功盘活80亿地产项目 AMC积极探索困境资产“解题钥匙”
揭秘游戏科技树:哪些科技看似不起眼却能颠覆全局?
“便便”里的大学问--隐藏在粪便中的健康密码
肺栓塞突襲!警惕症狀與前兆,及早發現救命關鍵
机器人导航与路径规划技术的研究与应用
景德镇陶瓷职业技术学院2024年学费标准及各专业收费情况
拘留所为什么要剃光头:揭秘一种特殊管理方式
轻松掌握PDF文件制作技巧,快速创建专业文档
备受喜爱的黑天鹅,为什么值得警惕?
林逋:北宋隐逸诗人,以梅为妻以鹤为子
日本房产交易税费全面解析及最新政策解读(日本买房子要交哪些税)
了解 CS2 评级:反恐精英 2 中的高级排名和 CS 评级概述
装修硬装一般多少费用?看完装修明细即可准确预算!
10年20万公里后,纯电车和燃油车的花费差距
道教咒语体系如何分类
八字结三种打法详解:图文并茂,简单实用