基于计算机视觉的图像水印检测和去除系统
创作时间:
作者:
@小白创作中心
基于计算机视觉的图像水印检测和去除系统
引用
CSDN
1.
https://blog.csdn.net/muyouhang/article/details/144296845
本文介绍了一个基于计算机视觉的图像水印检测和去除系统。该系统结合了传统计算机视觉技术和深度学习方法,能够准确识别和去除图像中的水印或LOGO。文章详细描述了系统的各个模块,包括水印检测、密集区域检测、图像修复等,并提供了完整的代码实现。
效果展示
多准备几张待消除的水印或者LOGO图像,越多图像匹配、检测的就越准确。匹配到之后,就会根据rect矩形框,处理检测到的水印或者LOGO了。
技术原理解析
这是一个结合了传统计算机视觉和深度学习的图像水印去除系统。该系统主要包含以下几个核心技术点:
1. 水印检测模块
系统使用特征点匹配的方法来定位水印位置。具体实现包括:
def match_template(self, img, template, threshold=10):
# 使用SIFT或ORB特征检测器
detector = cv2.SIFT_create()
# 提取特征点和描述符
kp1, des1 = detector.detectAndCompute(img, None)
kp2, des2 = detector.detectAndCompute(template, None)
# 特征点匹配
bf = cv2.BFMatcher(cv2.NORM_L2)
matches = bf.knnMatch(des1, des2, k=2)
这里使用了SIFT(Scale-Invariant Feature Transform)算法,它能够检测和描述图像中的局部特征,具有尺度不变性和旋转不变性的特点。
2. 密集区域检测
使用DBSCAN聚类算法来找出特征点的密集区域,这通常就是水印所在的位置:
def find_dense_region(self, points, eps=30, min_samples=4):
points_array = np.array([p[0] for p in points])
clustering = DBSCAN(eps=eps, min_samples=min_samples).fit(points_array)
DBSCAN的优势在于:
- 不需要预先指定聚类数量
- 能够发现任意形状的聚类
- 对噪声点具有良好的鲁棒性
3. 图像修复
系统采用了两层修复策略:
3.1 传统修复
首先使用OpenCV的inpainting算法进行初步修复:
def apply_inpainting(self, image, x_min, y_min, x_max, y_max):
mask = np.zeros(image.shape[:2], dtype=np.uint8)
mask[y_min:y_max, x_min:x_max] = 255
result = cv2.inpaint(image, mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)
3.2 深度学习修复
然后使用基于GAN的图像修复模型进行精细修复:
inpaint_image = self.gin_sdk.inference("tmp_image.png","tmp_mask.png")
inpaint_image = cv2.cvtColor(inpaint_image,cv2.COLOR_RGB2BGR)
4. 边缘检测优化
系统还包含了一个智能的边缘区域判断机制:
def is_corner_region(self, img_shape, x_min, y_min, x_max, y_max):
height, width = img_shape[:2]
region_center_x = (x_min + x_max) / 2
region_center_y = (y_min + y_max) / 2
grid_width = width / 3
grid_height = height / 3
这个机制将图像分成3x3的网格,判断水印是否位于边缘区域,从而决定是否需要进行修复。
技术亮点
- 多模板匹配:支持多个水印模板的匹配,提高了系统的通用性。
- 双重修复:结合传统算法和深度学习方法,既保证了处理速度,又确保了修复质量。
- 智能判断:通过边缘检测和密度聚类,准确定位水印位置,减少误判。
- 自动化处理:支持批量处理整个目录的图像,提高了工作效率。
实现细节
系统的处理流程如下:
- 图像预处理:将图像统一缩放到合适大小
- 特征匹配:使用SIFT算法进行模板匹配
- 区域定位:使用DBSCAN确定水印区域
- 图像修复:先使用传统inpainting,再使用GAN模型进行精修
- 后处理:进行颜色空间转换和图像保存
使用方法
template_dir = r'path/to/template/directory'
directory = r'path/to/image/directory'
mask_generator = ImageMaskGenerator(template_dir)
mask_generator.process_directory(directory)
总结
这个系统展示了如何将传统计算机视觉技术与现代深度学习方法相结合,创造出一个实用的图像处理工具。它不仅能够准确识别和去除水印,还能保持图像的自然性和连续性。该系统的模块化设计也使得它易于维护和扩展。
完整代码
import cv2
import os
import numpy as np
from sklearn.cluster import DBSCAN
import sys
sys.path.append("C:/workspace/Code/gin")
from test_gin import GIN
class ImageMaskGenerator:
def __init__(self, template_dir):
"""初始化图像遮罩生成器"""
self
热门推荐
《魔兽世界》怀旧服武器战天赋加点全攻略 打造无敌战士的完美选择
青少年急性躁狂发作如何选择合适的药物?
老巴子是什么意思 河南老巴子是什么意思
鱼怀孕有哪些现象?
企业如何借力AI,提升人力资源管理的效率完成组织提效变革
人格权:了解我国法律保护的几个关键点
如何理解ISO9001质量管理体系的主要内容?
ERP 和 MES 系统有什么区别和联系
Excel表格提取数字求和的四种方法
手机创建txt文档的三种方法
企业并购中怎么进行财务尽职调查?
“杭州六小龙”首个IPO启动 实探求解:杭州为何能孕育出“六小龙”?
著名工程地质学家崔鹏:中国首个“泥石流院士”的科研之路
离别的诗篇,诉说着无尽的思念
资产配置的重要性
手术后拆线疼不疼?这些因素会影响疼痛感受
柴犬寿命(揭秘柴犬的平均寿命及如何延长其寿命)
汉明校验·简明教程
狼人游戏怎么玩法介绍
如何在研发中保证技术方案的前瞻性和创新性
厦门旅游交通工具全攻略:公交、地铁、观光巴士、自行车、出租车
环太湖骑行攻略:400公里的江南水乡之旅
退伍军人创业扶持政策详解及可用资源整合指南
公积金贷款还款账户余额不足怎么办?三种解决方案详解
即将开通!跟坐地铁一样,东莞与广州、佛山30分钟互达!
蓝花楹花语:从文化象征到生活应用的全面解读
躯体化怎样缓解
《小巷人家》女性角色爆火,角色出圈靠命?
工作半年就离职?面试中这样回答最巧妙
如何提升工会团队建设