问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

卷积神经网络中的池化操作:原理、类型与应用

创作时间:
作者:
@小白创作中心

卷积神经网络中的池化操作:原理、类型与应用

引用
CSDN
1.
https://blog.csdn.net/qq_39780701/article/details/139220829

卷积神经网络(CNN)中的池化操作是一种重要的下采样技术,它通过减少数据的空间维度来降低计算复杂度,同时保持最重要的特征。本文将详细介绍池化操作的定义、类型、目的、参数及其尺寸变化公式,帮助读者全面理解这一关键技术。

一、什么是池化?

卷积神经网络(CNN)中的池化(Pooling)操作是一种下采样技术,其目的是减少数据的空间维度(宽度和高度),同时保持最重要的特征并降低计算复杂度。池化操作不仅能够减少模型对计算资源的需求,还能增加模型的鲁棒性(对图像中的小变形不敏感),并帮助提取图像的关键特征。

二、常见池化类型

(1)最大池化

最大池化(Max Pooling)是从输入的每个预定义区域选取最大值作为输出。这是最常用的池化方法,有助于保持图像中的重要特征。

(2)平均池化

平均池化 (Average Pooling)是取输入区域内的平均值作为输出。相比最大池化,平均池化更能平滑特征并减少噪声。

三、池化操作的目的

池化的主要作用 解释
降维 通过减少特征图的尺寸,降低模型的计算复杂度和内存需求。
特征不变性 增强模型对输入数据中的平移、旋转和尺度变化的不变性,使得模型更加鲁棒。
防止过拟合 通过减少参数数量,降低模型过度拟合训练数据的风险。
提取重要特征 仅保留每个区域的最重要信息,如最大值或平均值,忽略不那么重要的细节。
增大感受野 随着网络的深入,池化帮助后面的层能够“看到”原始输入的更大范围,捕捉更全局的特征。

四、池化层的参数

池化操作中有三个重要的参数,它们分别是:池化窗口大小,步长,填充
参数 解释
池化窗口大小(Kernel Size) 决定了一次池化操作覆盖输入特征图的区域大小,例如2x2或3x3。缩写成
步长(stride) 池化窗口在特征图上移动的间隔,直接影响输出特征图的大小。缩写成
填充(padding) 通常在卷积层中更常见,但在某些情况下也可能应用于池化层,以控制输出尺寸。缩写成

下图描述的是如何对一个4x4尺寸的特征图中的每个局部区域应用平均池化。具体而言,我们采用一个2x2大小的过滤器(filter),以步长为2的方式遍历特征图,对过滤器覆盖的每个2x2邻域内的像素值进行平均计算,并将得到的平均值作为结果输出到下一层。这种通过局部区域均值采样的技术即被称为平均池化。

用f=2的池化窗口,对p=0的输入数据,进行以步长s=2的平均池化操作

五、池化操作前后尺寸变化

尺寸的公式如下:
池化操作前后尺寸大小
参数 解释
H 池化前的行高
W 池化前的列宽
C 池化前的通道数
h 池化后的行高,,向下取整。
w 池化后的列宽,,向下取整。
c 池化后的通道数,,池化后的通道数和池化前一样。
f 池化窗口打大小,也就是filter的fxf尺寸
s 池化操作的步长

因为一般池化操作都没有padding,也就是
。故按照
公式,带入
就得到上面图中的公式,如果有padding可按照
计算。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号