问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

中考数学高分攻略技巧大公开

创作时间:
作者:
@小白创作中心

中考数学高分攻略技巧大公开

引用
1
来源
1.
https://www.yizhongkao.com/5933.html

中考数学是许多学生最为关注的科目之一。为了帮助考生在中考数学中取得好成绩,本文整理了丰富的解题技巧、考试策略和复习方法,涵盖了选择题解法、考试技巧、数学思想方法、证明技巧以及临场发挥等多个方面,旨在帮助考生全面提升数学解题能力,从容应对中考挑战。

一、中考数学选择题的解法技巧

  1. 排除法:根据题设和有关知识,排除明显不正确选项,那么剩下唯一的选项,自然就是正确的选项。

  2. 特殊值法:即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件,且易于计算。

  3. 通过猜想、测量的方法,直接观察或得出结果。这类方法在近年来的中考题中常被运用于探索规律性的问题。

二、考试技巧

充分利用考前5分钟

很多学生或家长不知道,按照大型的考试的要求,考前五分钟是发卷时间,考生填写准考证。这五分钟是不准做题的,但是可以看题。发现很多考生拿到试卷之后,就从第一个题开始看,给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。

进入考试先审题

考试开始后,很多学生喜欢奋笔疾书;但切记:审题一定要仔细,一定要慢。数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。所以审题一定要仔细,你只有把题意弄明白了,这个题目才有可能做对。

节约时间的关键是一次做对

有些学生,好不容易遇到一个简单的题目,就一味地求快,争取时间去做不会做的题目。殊不知,前面的选择题和后边的大题,难易差距是很大的,但是分值的含金量是一样的,有些学生看不上前边小题的分数,觉得后边大题的分数才“值钱”,这是严重的误区。希望学生在考试的时候,一定要培养一次就做对的习惯,不要指望通过最后的检查力挽狂澜。

做题顺序:由易到难

一般大型考试是有一个铺垫的,如前边的题目,往往入手比较简单,越往后越难,这样有利于学生正常的发挥。的高考,数学就吓倒了很多人。它第一个题就是一个大题,很多学生就被吓蒙了,整个考试考得一塌糊涂。后期为了避免同样的情况再出现,国家在命题的时候一般遵循由易到难的规律,先让学生进入状态,再去加大难度。

控制速度,稳步推进

平常学生爱问老师:“我在做题的时候多长时间做一个选择题,多长时间做一个填空题,才是比较合理的呢?”这个不能一概而论,最好的节奏就是平常的节奏:你平常用什么样的速度做题,考试的时候就用什么样的速度。不要强迫自己在考试的时候加快速度!很可能速度一加快,反而导致了答题质量的下降。一场大型的考试,你会做的题目本身就那么多,如果你在简单题加快速度,导致会做的题目出错;而你腾出的时间去做后边的难题,又长时间地解不出来,那么很可能造成难题简单题都拿不到分。

三、常用的数学思想方法

  1. 数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。

  2. 联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

  3. 分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

  4. 待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

  5. 配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

  6. 换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

  7. 分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然;则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。这种思维过程通常称为“执果寻因”。

  8. 综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”。

  9. 演绎法:由一般到特殊的推理方法。

  10. 归纳法:由一般到特殊的推理方法。

  11. 类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间。根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。类比法既可能是特殊到特殊,也可能一般到一般的推理。

四、证明角的相等

  1. 对顶角相等。

  2. 角(或同角)的补角相等或余角相等。

  3. 两直线平行,同位角相等、内错角相等。

  4. 凡直角都相等。

  5. 角平分线分得的两个角相等。

  6. 同一个三角形中,等边对等角。

  7. 等腰三角形中,底边上的高(或中线)平分顶角。

  8. 平行四边形的对角相等。

  9. 菱形的每一条对角线平分一组对角。

  10. 等腰梯形同一底上的两个角相等。

  11. 关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所对的圆心角相等。

  12. 圆内接四边形的任何一个外角都等于它的内对角。

  13. 同弧或等弧所对的圆周角相等。

  14. 弦切角等于它所夹的弧对的圆周角。

  15. 同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

  16. 全等三角形的对应角相等。

  17. 相似三角形的对应角相等。

  18. 利用等量代换。

  19. 利用代数或三角计算出角的度数相等

  20. 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。

五、证明直线的平行或垂直

证明两条直线平行的主要依据和方法:

  1. 定义、在同一平面内不相交的两条直线平行。

  2. 平行定理、两条直线都和第三条直线平行,这两条直线也互相平行。

  3. 平行线的判定:同位角相等(内错角或同旁内角),两直线平行。

  4. 平行四边形的对边平行。

  5. 梯形的两底平行。

  6. 三角形(或梯形)的中位线平行与第三边(或两底)

  7. 一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。

证明两条直线垂直的主要依据和方法:

  1. 两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。

  2. 直角三角形的两直角边互相垂直。

  3. 三角形的两个锐角互余,则第三个内角为直角。

  4. 三角形一边的中线等于这边的一半,则这个三角形为直角三角形。

  5. 三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。

  6. 三角形(或多边形)一边上的高垂直于这边。

  7. 等腰三角形的顶角平分线(或底边上的中线)垂直于底边。

  8. 矩形的两临边互相垂直。

  9. 菱形的对角线互相垂直。

  10. 平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。

  11. 半圆或直径所对的圆周角是直角。

  12. 圆的切线垂直于过切点的半径。

  13. 相交两圆的连心线垂直于两圆的公共弦。

六、数学考试临场发挥的技巧

提前进入“角色”

考前一个晚上睡足八个小时,早晨吃好清淡早餐,按清单带齐一切用具,提前半小时到达考区,一方面可以消除新异刺激,稳定情绪,从容进场,另一方面也留有时间提前进入“角色”让大脑开始简单的数学活动,进入单一的数学情境。如清点一下用具是否带全(笔、橡皮、作图工具、身分证、准考证等)。

精神要放松,情绪要自控

最易导致心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此间保持心态平衡的方法有三种

  1. 转移注意法:避开临考者的目光,把注意力转移到某一次你印象较深的数学模拟考试的评讲课上,或转移到对往日有趣、滑稽事情的回忆中。

  2. 自我安慰法:如“我经过的考试多了,没什么了不起”,“考试,老师监督下的独立作业,无非是换一换环境”等。

  3. 抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,如此进行到发卷时。

迅速摸透“题情”

刚拿到试卷,一般心情比较紧张,不忙匆匆作答,可先从头到尾、正面反面通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作全面调查,一般可在十分钟之内做完三件事。

  1. 顺利解答那些一眼看得出结论的简单选择或填空题(一旦解出,情绪立即稳定)。

  2. 对不能立即作答的题目,可一面通览,一面粗略分为A、B两类:A类指题型比较熟悉、估计上手比较容易的题目,B类是题型比较陌生、自我感觉比较困难的题目。

  3. 做到三个心中有数:对全卷一共有几道大小题有数,防止漏做题,对每道题各占几分心中有数,大致区分一下哪些属于代数题,哪些属于三角题,哪些属于综合型的题。

信心要充足,暗示靠自己

答卷中,见到简单题,要细心,莫忘乎所以,谨防“大意失荆州”。面对偏难的题,要耐心,不能急。考试全程都要确定“人家会的我也会,人家不会的我也会”的必胜信念,使自己始终处于最佳竞技状态。

三先三后

在通览全卷、并作了简单题的第一遍解答后,情绪基本趋于稳定,大脑趋于亢奋,此后七八十分钟内就是最佳状态的发挥或收获丰硕果实的黄金季节了。实践证明,满分卷是极少数,绝大部分考生都只能拿下部分题目或题目的部分得分。因此,实施“三先三后”及“分段得分”的考试艺术是明智的。

  1. 先易后难。就是说,先做简单题,再做复杂题;先做A类题,再做B类题。当进行第二遍解答时(通览并顺手解答算第一遍),就无需拘泥于从前到后的顺序,应根据自己的实际,跳过啃不动的题目,从易到难。

  2. 先高(分)后低(分)。这里主要是指在考试的后半段时要特别注重时间效益,如两道题都会做,先做高分题,后做低分题,以使时间不足时少失分;到了最后十分钟,也应对那些拿不下来的题目就高分题“分段得分”,以增加在时间不足前提下的得分。

  3. 先同后异。就是说,可考虑先做同学科同类型的题目。这样思考比较集中,知识或方法的沟通比较容易,有利于提高单位时间的效益。一般说来,考试解题必须进行“兴奋灶”的转移,思考必须进行代数学科与几何学科的相互换位,必须进行从这一章节到那一章节的跳跃,但“先同后异”可以避免“兴奋灶”过急、过频和过陡的跳跃。

三先三后,要结合实际,要因人而异,谨防“高分题久攻不下,低分题无暇顾及”。

七、中考数学压轴题的解题切入点

切入点一:构造定理所需的图形或基本图形

在解决问题的过程中,有时添加辅助线是必不可少的。对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。

切入点二:做不出、找相似,有相似、用相似

压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。

切入点三:紧扣不变量,并善于使用前题所采用的方法或结论

在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。

切入点四:在题目中寻找多解的信息

图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避免漏解也是一个令考生头痛的问题,其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,实际上就是反复认真的审题。

总之,中考数学压轴题的切入点有很多,考试时并不是一定要找到那么多,往往只需找到一两个就行了,关键是找到以后一定要敢于去做。有些同学往往想想觉得不行就放弃了,其实绝大多数的题目只要想到上述切入点,认真做下去,问题基本都可以得到解决。

八、答题检查的方法

方法一:检查基本概念

基本概念、法则、公式是同学们检查时最容易忽视的,因此在解题时极易发生小错误而自己却检查数次也发现不了,所以,做完试卷第一步,在检查基本题时,我们要仔细读题,回到概念的定义中去,对症下药。

方法二:对称检验

对称的条件势必导致结论的对称,利用这种对称原理可以对答案进行快速检验。

方法三:不变量检验

某些数学问题在变化、变形过程中,其中有的量保持不变,如图形的平移、旋转、翻折时,图形的形状、大小不变,基本量也不变。利用这种变化过程中的不变量,可以直接验证某些答案的正确性。

方法四:特殊情形检验

问题的特殊情况往往比一般情况更易解决,因此通过特殊值、特例来检验答案是非常快捷的方法。

方法五:答案逆推法

相信这种方法很多学生都会,在求出题目的答案后,可将答案重新代回题目中,检验题目的条件是否还成立。

此外,直接检查作为最基础的方法,要重视技巧

直接检验法就是围绕原来的解题方法,针对求解的过程及相关结论进行核对、查校、验算。为配合检查,首先应正确使用草稿纸。建议大家将草稿纸叠出格痕,按顺序演算,并标上题号,方便检查对照。其次,一定要细心细心再细心,每一个细节都需要仔细推敲,而不能“想当然”,记住“最安全的地方有时候也是最危险的地方”。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号