FIE 韩布兴院士团队:废塑料转化为汽油——沸石的孔隙率和酸度影响
FIE 韩布兴院士团队:废塑料转化为汽油——沸石的孔隙率和酸度影响
随着塑料污染问题日益严重,如何高效处理废塑料成为全球关注的焦点。中国科学院韩布兴院士团队在这一领域取得了重要突破,他们发现H-Beta沸石在240°C下能高效裂解高密度聚乙烯生成汽油,为废塑料的资源化利用开辟了新途径。
研究背景及意义
塑料作为现代生活中必不可少的材料,其使用量在过去50年中显著增加,产生了大量的塑料废物,导致了环境污染和土地资源浪费。传统机械方法回收塑料废物面临技术和经济挑战,而化学回收为降解塑料提供了机会。聚乙烯(PE)是应用最广泛的塑料之一,但由于其碳-碳键的惰性,废弃PE难以降解。
本研究旨在开发高效的催化体系,以在温和条件下高效降解PE。沸石由于其廉价、稳定且在断裂碳-碳键方面的高效性,被认为是降解聚烯烃的有前途的催化剂。然而,目前沸石催化剂在温和条件下的性能尚不理想,因此有必要系统地研究沸石在聚烯烃降解中的关键因素,以开发出高效的催化剂。
主要研究内容及结论
在240°C测试了一系列具有不同孔隙率和酸度的沸石对HDPE的催化转化效果。结果显示,所有研究的沸石主要生成汽油,其中异构烷烃为主要成分,烯烃和芳香烃含量较少。沸石通过异构化、β-裂解和氢转移将PE转化为异构烷烃。异构烷烃提高了汽油的辛烷值,而烯烃降低了汽油的稳定性,芳香烃造成环境污染。因此,沸石是生产高质量汽油的理想催化剂。然而,不同沸石对HDPE的转化效果差异显著。
对照实验结果表明,未使用催化剂时PE的转化率可忽略不计。H-Beta和ZSM-5沸石的催化性能优于其他微孔沸石(MCM-22、丝光沸石、ZSM-35和HY)。介孔材料(MCM-41和SBA-15)的PE转化率较低。尽管HDPE是体积较大的分子,理论上介孔材料更有利于其转化,但MCM-41和SBA-15的转化率显著低于微孔材料H-Beta。为理解这些现象,进一步研究了沸石的活性、孔隙率和酸度之间的关系。
研究显示,H-Beta、ZSM-5、丝光沸石、ZSM-35、MCM-22和HY具有典型微孔材料的I型等温线,而MCM-41和SBA-15则显示介孔材料的IV型等温线。H-Beta、MCM-22、MCM-41和SBA-15具有较大的内比表面积和外比表面积。X射线衍射和固态核磁共振(NMR)谱证实了每种沸石的晶体结构和化学环境。微孔沸石的狭窄扩散通道限制了反应物和中间体向活性位点的扩散,导致其催化性能较差,而H-Beta和ZSM-5具有较大的三维扩散通道,因此表现出显著更高的催化性能。这表明,沸石的催化性能与其扩散通道密切相关。
图1 微孔和介孔材料的孔径示意图
HY沸石在所有三个方向上都具有宽扩散通道,但其催化性能较差。通过检查反应残留物,发现HY沸石的反应残留物是黑色的,而其他催化剂的残留物为黄色、棕色或绿色,表明HY沸石促进了焦炭的形成。扫描电子显微镜(SEM)检查显示,HY沸石的反应残留物中存在明显的碳沉积现象。HY沸石属于FAU型沸石,其笼状结构(11.2 Å)大于开口(7.3 Å),导致焦炭在超笼中难以扩散并阻塞活性位点,从而导致其催化性能较低。因此,沸石的笼状结构不利于HDPE的转化。
图 4 沸石评估结果
催化剂对PE转化的催化活性受到多种因素的影响,包括孔隙性(BET表面积、外表面积、通道性质和笼状结构)和酸性(酸强度和可达性),这些因素都与沸石框架的结构有关。虽然表面积与催化活性之间的直接关系不明显,但较大的表面积通常有利于PE转化。较宽的扩散通道有利于催化反应,而笼状结构则会导致催化剂中毒。催化剂的酸性和可达性对催化性能也有重要影响。通过对这些因素进行加权评估,发现笼状结构、通道性质、酸强度和可达酸位点对催化活性具有重要作用,而BET表面积和外表面积的影响较小。H-Beta催化PE裂解时,PE在Brønsted酸位点上质子化,生成碳正离子并裂解成烷烃和烯烃。H-Beta的大外表面积和良好通道系统优化了反应。最佳反应温度为260°C,能耗最低,产率在280°C时达到65.8%。
结论
韩布兴院士团队的研究揭示了沸石孔隙率和酸度对废塑料转化为汽油的关键影响,为设计高效塑料转化催化剂提供了重要参考。这一突破性进展不仅有助于解决日益严重的塑料污染问题,还为开发新型能源转化技术开辟了新途径。
原文信息
Conversion of polyethylene to gasoline: Influence of porosity and acidity of zeolites
Chunyu LI1, Haihong WU1,#, Ziyu CEN2, Wanying HAN1, Xinrui ZHENG1, Jianxin ZHAI1, Jiao XU1, Longfei LIN3,#, Mingyuan HE1,#, Buxing HAN4,#
Author information:
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; Institute of Eco-Chongming, Shanghai 202162, China
Abstract:
Plastic waste is causing serious environmental problems. Developing efficient, cheap and stable catalytic routes to convert plastic waste into valuable products is of great importance for sustainable development, but remains to be a challenging task. Zeolites are cheap and stable, but they are usually not efficient for plastic conversion at a low temperature. Herein a series of microporous and mesoporous zeolites were used to study the influence of porosity and acidity of zeolite on catalytic activity for plastics conversion. It was observed that H-Beta zeolite was an efficient catalyst for cracking high-density polyethylene to gasoline at 240 °C, and the products were almost C4–C12 alkanes. The effect of porosity and acidity on catalytic performance of zeolites was evaluated, which clearly visualized the good performance of H-Beta due to high surface area, large channel system, large amount accessible acidic sites. This study provides very useful information for designing zeolites for efficient conversion of plastics.
Keywords:
plastics conversion, polyethylene, zeolites, acidity, porosity
Cite this article
Chunyu LI, Haihong WU, Ziyu CEN, Wanying HAN, Xinrui ZHENG, Jianxin ZHAI, Jiao XU, Longfei LIN, Mingyuan HE, Buxing HAN. Conversion of polyethylene to gasoline: Influence of porosity and acidity of zeolites. Front. Energy, 2023, 17(6): 763–774