问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

多任务学习最新进展:基于神经元级共享的CTR、CVR多任务联合预估方法

创作时间:
作者:
@小白创作中心

多任务学习最新进展:基于神经元级共享的CTR、CVR多任务联合预估方法

引用
1
来源
1.
http://doc.cserver.com.cn/doc_61a9bfea-10fa-4b43-a4cc-95ca6d748dc9.html

本文将介绍一种基于神经元级共享的 CTR(点击率)和 CVR(转化率)多任务联合预估的方法。文章分为两大部分:第一部分介绍多任务学习相关发展;第二部分具体介绍提出的方法。

1. 多任务学习的背景介绍

多任务学习(Multi-task Learning,MTL)是一种机器学习框架,它通过同时学习多个相关任务来改善模型的泛化能力。在推荐系统中,CTR 和 CVR 是两个密切相关但又不同的预测任务。CTR 预估关注的是用户是否会点击某个推荐内容,而 CVR 预估则关注用户在点击后是否会完成某个目标行为(如购买)。这两个任务之间存在一定的相关性,因此可以利用多任务学习框架来同时优化这两个任务的预测性能。

2. 多任务经典模型结构

在多任务学习中,经典的模型结构通常包括一个共享的特征提取层和多个任务特定的输出层。共享层用于提取对所有任务都通用的特征,而每个任务的输出层则负责学习特定任务的特征。这种结构可以有效地利用任务之间的相关性,提高模型的预测性能。

3. 基于神经元级共享的 CTR、CVR 多任务联合预估方法

我们提出了一种基于神经元级共享的多任务联合预估方法。与传统的多任务学习方法不同,我们的方法在神经元级别实现了特征共享。具体来说,我们设计了一个共享的神经网络层,该层的每个神经元都可以被所有任务共享。这种设计可以更细粒度地控制特征共享,使得模型能够更灵活地学习任务之间的相关性和差异性。

实验结果表明,基于神经元级共享的多任务联合预估方法在 CTR 和 CVR 预估任务上都取得了显著的性能提升。与传统的多任务学习方法相比,我们的方法能够更好地利用任务之间的相关性,同时保持对每个任务的预测精度。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号