线性回归的Matlab代码实现详解
创作时间:
作者:
@小白创作中心
线性回归的Matlab代码实现详解
引用
CSDN
1.
https://blog.csdn.net/m0_72300717/article/details/142850982
一、前言
本教程将使用Matlab 2020a实现线性回归算法。虽然版本可能有所不同,但基本的.m代码应该都能运行。需要注意的是,Simulink对版本的要求可能更高一些。
二、任务描述
基于线性回归的理论推导,本教程将用代码实现线性回归,并分析预测结果。同时,我们将探讨学习率和迭代次数对系统收敛速度和代码运行速度的影响。
三、代码实现
我们将通过一个房价预测的案例来研究单变量线性回归,即输入特征只有一个(房屋面积)。首先,使用一次函数生成相关样本数据:
% ----------------------原始数据集---------------------- %
x = linspace(0, 1000, 200); % 生成横坐标(房屋面积)数据
y = 1.5 * x + 100; % 生成房价
data = [x; y]; % 组合成二维数据
为了模拟现实情况中的数据噪声,我们需要对样本添加噪声:
noise_level = 30; % 定义噪声参数
noise = noise_level * randn(size(data)); % 生成与数据相同大小的高斯噪声
noisy_data = data + noise; % 将噪声添加到数据中
noisy_x = noisy_data(1,:); % 添加噪声后的特征(房屋面积)
noisy_y = noisy_data(2,:); % 添加噪声后的结果(房价)
在进行梯度下降迭代之前,需要对样本数据进行归一化处理:
std_x = (noisy_x - mean(noisy_x)) / std(noisy_x); % 标准化x
std_y = (noisy_y - mean(noisy_y)) / std(noisy_y); % 标准化y
接下来是梯度下降迭代的核心代码:
% ------------------------------主循环代码-------------------------------
for i = 1 : iteration_num
y_pred = theta1 * std_x + theta0; % 预测值
% 计算梯度
d_theta1 = (1/m) * (theta1 * sum(std_x.^2) - sum((std_y - theta0) .* std_x));
d_theta0 = theta0 - (1/m) * sum(std_y - theta1 * std_x);
% 更新参数
theta1 = theta1 - alpha * d_theta1;
theta0 = theta0 - alpha * d_theta0;
loss = (1/m) * sum((y_pred - std_y).^2); % 计算损失
J_history(i) = loss;
end
迭代结束后,需要对参数进行反归一化处理:
% 反归一化后,才是真正的theta0和theta1
theta1 = theta1 * (std(noisy_y) / std(noisy_x)); % 恢复原始斜率
theta0 = mean(noisy_y) - theta1 * mean(noisy_x); % 恢复原始截距
四、输出结果与分析
下图展示了迭代500次后的预测结果,绿色的回归线与数据点基本吻合,说明模型预测效果较好。
此外,迭代500次的损失函数收敛图显示,损失值随着迭代次数的增加逐渐减小,呈现收敛状态。
以下是Matlab命令窗口打印的数据结果:
迭代次数:500次
loss损失:0.011024
最终线性回归方程:y = 1.49x + 104.89
theta1 = 1.49, theta0 = 104.89
通过绘制损失函数的图像,可以发现最终的损失函数J有一个全局最小点。
五、完整程序代码
clc;
clear;
close all;
% ----------------------原始数据集---------------------- %
x = linspace(0, 1000, 200); % 生成横坐标(房屋面积)数据
y = 1.5 * x + 100; % 生成房价
data = [x; y]; % 组合成二维数据
% -------------------------变量------------------------ %
iteration_num = 500; % 迭代次数
noise_level = 30; % 定义噪声参数
theta1 = 0; % 初始化斜率
theta0 = 0; % 初始化截距
alpha = 0.01; % 学习率
m = length(y); % 样本数量
J_history = zeros(iteration_num, 1); % 记录每次迭代的损失值
noise = noise_level * randn(size(data)); % 生成与数据相同大小的高斯噪声
noisy_data = data + noise; % 将噪声添加到数据中
noisy_x = noisy_data(1,:); % 添加噪声后的特征(房屋面积)
noisy_y = noisy_data(2,:); % 添加噪声后的结果(房价)
std_x = (noisy_x - mean(noisy_x)) / std(noisy_x); % 标准化x
std_y = (noisy_y - mean(noisy_y)) / std(noisy_y); % 标准化y
% ------------------------------主循环代码-------------------------------
for i = 1 : iteration_num
y_pred = theta1 * std_x + theta0; % 预测值
% 计算梯度
d_theta1 = (1/m) * (theta1 * sum(std_x.^2) - sum((std_y - theta0) .* std_x));
d_theta0 = theta0 - (1/m) * sum(std_y - theta1 * std_x);
% 更新参数
theta1 = theta1 - alpha * d_theta1;
theta0 = theta0 - alpha * d_theta0;
loss = (1/m) * sum((y_pred - std_y).^2); % 计算损失
J_history(i) = loss;
end
% ------------------------------绘制图像1------------------------------- %
subplot(2, 1, 1); % 创建两个子图
plot(noisy_data(1,:), noisy_data(2,:), '.b');
grid on; % 添加网格
xlim([0, 1000]); % 设置x轴范围
ylim([0, 1800]); % 设置y轴范围
hold on; % 保持图形,防止被后续图形覆盖
% 反归一化后,才是真正的theta0和theta1
theta1 = theta1 * (std(noisy_y) / std(noisy_x)); % 恢复原始斜率
theta0 = mean(noisy_y) - theta1 * mean(noisy_x); % 恢复原始截距
y_fit = theta1 * noisy_x + theta0; % 计算回归线的 y 值
plot(noisy_x, y_fit, '-g', 'LineWidth', 2); % 绘制回归线
title('运行结果'); % 标题
xlabel('房屋面积'); % 横坐标标签
ylabel('房屋价格'); % 纵坐标标签
legend('数据点', '回归线'); % 图例
hold off;
% ------------------------------绘制图像2------------------------------- %
subplot(2, 1, 2); % 创建两个子图
plot(1 : iteration_num, J_history, '-r', 'LineWidth', 2);
grid on; % 添加网格
title('损失函数收敛图'); % 标题
xlabel('迭代次数'); % 横坐标标签
ylabel('损失值'); % 纵坐标标签
% ------------------------------输出结果------------------------------- %
fprintf('迭代次数:%d次\n', iteration_num);
fprintf('loss损失:%.6f\n', loss);
fprintf('最终线性回归方程:y = %.2fx + %.2f\n', theta1, theta0);
fprintf('theta1 = %.2f, theta0 = %.2f\n', theta1, theta0);
% -----------------------------END OF FILE---------------------------- %
六、学习率的影响
学习率(α)对模型的收敛速度和效果有重要影响。以下是不同学习率下的实验结果:
- α = 0.01
- α = 0.002
- α = 5
通过实验可以发现,α越小,模型收敛的速度越慢,需要通过增加迭代次数来达到预期的效果。而当α取值不当时,模型可能无法收敛。因此,选择合适的学习率和迭代次数对于提高代码运行效率和预测结果至关重要。
热门推荐
HIV试纸检测费用能否报销?一文解析医保报销政策
开学家长必看!住校生超实用药品清单
2-3岁儿童语言发展里程碑及促进方法
阑尾炎在哪个位置疼
左右肩胛骨痛的预防方法
塔图姆的关键时刻表现决定着凯尔特人夺冠前景
银行的智能客服的回答准确率如何提高?
巴西木开花时间之秘:从环境喜好到日常管理的全面指南
无痛分娩针费用详解:影响价格的三大因素
《三角战略》Switch版从eShop下架!已购买仍可下载
扁平足为什么不能当兵?扁平足可以当警察吗?
腰部疾病如何鉴别
人事部三级笔译考试怎么报名?
赛博朋克2077如何调整画面设置
道奇T-234 抗战胜利的大功臣
建设人文关怀型医院的管理路径
如何委婉拒绝他人?10种表达方式
解限机全方位解析:新手教程 机制详解与进阶指南
初中生必看:3000个单词高效记忆法
怎么判断豆角熟没熟?豆角煮多久才能保证安全无毒呢?
7月炒豆角,别过油或焯水了!学会三大秘诀,脆绿又鲜嫩,还入味
邮票中的黄岩民居:浙江传统建筑的地域特色
员工抱怨的根源与解决方案探讨
五种绿茶助你瘦身!正确泡茶方法全解析
追溯铜文化的千年传奇:从古至今的辉煌
如何对新员工进行背景调查?
昆山亭林公园游玩攻略:开放时间、门票及主要景点介绍
中医七大门派之温补学派
进口限制放宽!我国牛黄行业原料供给紧张或缓解 体外培植开发市场空间大
鼻塞感冒期间能否运动跳高?专家给出专业建议