数字图像处理:RGB与HSV颜色模型的转换原理及MATLAB实现
创作时间:
作者:
@小白创作中心
数字图像处理:RGB与HSV颜色模型的转换原理及MATLAB实现
引用
CSDN
1.
https://blog.csdn.net/2301_80417284/article/details/144295437
在数字图像处理领域,RGB与HSV颜色模型的转换是一个常见的需求。HSV模型以其更符合人类视觉感知的特点,在许多应用中展现出优势。本文将详细介绍RGB与HSV颜色模型的转换原理,并提供MATLAB实现代码。
HSV颜色模型简介
HSV颜色模型,又称为六角锥体模型,以色调(H)、饱和度(S)、亮度(V)为基础,能够更加自然地表现和处理颜色,因而在计算机视觉、图像处理领域得到了广泛应用。
H表示色调:用来表示颜色的种类。色调是人在视觉上区分颜色的一种方式,类似RGB模型中的红、绿、蓝等基本颜色。色调通常用角度来表示,0°(红)
120°(绿)240°(蓝)~360°(红色)。S表示饱和度:用来表示颜色的纯净度和鲜艳程度。当S=1时,表示颜色是最纯净的、最鲜艳的;当S=0时,颜色变为灰色,表示没有鲜明的色彩。
V表示亮度:用来表示颜色的明暗程度。当V=1时,表示颜色完全亮丽;当V=0时,表示颜色完全暗淡,即颜色为黑色。
MATLAB代码实现
% 清空工作区和命令行窗口
clear;
clc;
% 读取图像
input_path = 'D:/FPGA/Image processing/8_rgb_hsv/matlab/1_1920x1080.bmp';
input_image = imread(input_path);
[height, width, ~] = size(input_image);
% 检查图像尺寸
if height ~= 1080 || width ~= 1920
error('输入图像必须是1920x1080像素!');
end
% 创建HSV图像和还原的RGB图像
hsv_image = zeros(height, width, 3);
restored_rgb = zeros(height, width, 3, 'uint8');
% RGB转HSV
for y = 1:height
for x = 1:width
R = double(input_image(y,x,1));
G = double(input_image(y,x,2));
B = double(input_image(y,x,3));
% 归一化到[0,1]
r = R/255;
g = G/255;
b = B/255;
Cmax = max([r g b]);
Cmin = min([r g b]);
delta = Cmax - Cmin;
% 计算H (归一化到0-1)
if delta == 0
H = 0;
elseif Cmax == r
H = mod(((g-b)/delta), 6)/6;
elseif Cmax == g
H = ((b-r)/delta + 2)/6;
else
H = ((r-g)/delta + 4)/6;
end
% 确保H为正值
if H < 0
H = H + 1;
end
% 计算S
if Cmax == 0
S = 0;
else
S = delta/Cmax;
end
% 计算V
V = Cmax;
% 存储HSV值 (已归一化到0-1)
hsv_image(y,x,1) = H;
hsv_image(y,x,2) = S;
hsv_image(y,x,3) = V;
end
end
% HSV转回RGB
for y = 1:height
for x = 1:width
H = hsv_image(y,x,1) * 6; % 转回0-6范围以便计算
S = hsv_image(y,x,2);
V = hsv_image(y,x,3);
C = V * S;
X = C * (1 - abs(mod(H, 2) - 1));
m = V - C;
% 根据H的范围决定RGB值
if H >= 0 && H < 1
r = C; g = X; b = 0;
elseif H >= 1 && H < 2
r = X; g = C; b = 0;
elseif H >= 2 && H < 3
r = 0; g = C; b = X;
elseif H >= 3 && H < 4
r = 0; g = X; b = C;
elseif H >= 4 && H < 5
r = X; g = 0; b = C;
else
r = C; g = 0; b = X;
end
% 转换回[0,255]范围
R = round((r + m) * 255);
G = round((g + m) * 255);
B = round((b + m) * 255);
% 确保值在0-255范围内
R = min(max(R, 0), 255);
G = min(max(G, 0), 255);
B = min(max(B, 0), 255);
restored_rgb(y,x,1) = uint8(R);
restored_rgb(y,x,2) = uint8(G);
restored_rgb(y,x,3) = uint8(B);
end
end
% 显示原始图像、HSV图像和还原的RGB图像
figure('Name', 'Image Comparison');
subplot(1,3,1);
imshow(input_image);
title('Original RGB Image');
subplot(1,3,2);
imshow(hsv_image); % 现在可以直接显示,因为值已经在0-1范围内
title('HSV Image');
subplot(1,3,3);
imshow(restored_rgb);
title('Restored RGB Image');
% 获取输入文件的目录路径
[filepath,~,~] = fileparts(input_path);
% 在相同目录下保存输出图像
imwrite(hsv_image, fullfile(filepath, 'output_hsv.bmp'));
imwrite(restored_rgb, fullfile(filepath, 'output_restored_rgb.bmp'));
% 打开输出文件
output_path = fullfile(filepath, 'output.txt');
fidc = fopen(output_path, 'wb');
% 将HSV数据写入文本文件
for y = 1:height
for x = 1:width
% 将0-1范围的HSV值转换为适合FPGA处理的定点数格式
% 假设FPGA使用8位精度:
% H: 0-1 转换为 0-255
% S: 0-1 转换为 0-255
% V: 0-1 转换为 0-255
H = uint8(hsv_image(y,x,1) * 255);
S = uint8(hsv_image(y,x,2) * 255);
V = uint8(hsv_image(y,x,3) * 255);
% 按HSV顺序写入三个字节
fwrite(fidc, [H S V], 'uint8');
end
end
% 关闭文件
fclose(fidc);
fprintf('已生成output.txt文件\n');
FPGA实现
在FPGA实现中,需要注意以下几点:
RGB转HSV:由于H(色调)本来应该0°
360°,如今映射到了0255,会有所损失。HSV转RGB:中间变量的精度真的很重要!!!
本文原文来自CSDN博客
热门推荐
苏轼理想养老地的美食地图:宜兴四条街巷的地道美味
门诊预约“秒光”!青岛医生仝乐中医新思路让小针刀疗法热起来
不会吐痰怎么排痰
下水道堵了怎么办?别急着花钱请人,只需一个瓶子,3分钟搞定
《飞将李广》:民族舞剧展现名将风采
购买库存车全攻略:从价格谈判到验车要点
医生解答:隔夜凤梨到底能不能吃?
认识浆细胞样树突状细胞(pDC)
如何有效治疗鹅掌风,改善生活习惯与饮食尤为重要
工程施工招标投标一般包含哪些程序
【从长安、逻些到敦煌】唐、蕃文化的汇聚与融合
强化家长监督,共同守护校园食品安全
全国残疾人体育训练基地正式启用!实现无障碍环境全覆盖
养生调理的方法:从入门到进阶,打造健康生活
T-ara:从巅峰到低谷,韩国女团的传奇历程与不屈精神
治愈心灵的忧郁蓝|Dadu Shin
西游记中镇元子的地位如何?他与孙悟空是什么关系?
创新性进展!干细胞外泌体滴鼻治疗脑梗死,在家中就能完成自主给药!
企业被税务局约谈时,通常会涉及哪些内容?如何做好准备?
补阴生津三大中成药详解:六味地黄丸、生脉饮、麦味地黄丸
西湖诗韵:中国古代诗人笔下的绝美景致
汽车车灯类型及用途知识
掌握包子制作技巧,轻松享受松软美食的乐趣与温暖记忆
超全总结!多传感器标定的方方面面
坐拥过半历史文化街区 荔湾何以不负“最广州”?
睫毛生长周期短且易脱落,如何拯救稀疏睫毛?
纸张的制作、识别与保存指南
自古皇帝多薄情,偏偏有4位皇帝,对初恋坚贞不渝
阿瓦隆规则细节介绍:从基础到进阶的全面攻略
主流安卓开发环境:如何选择与使用?