问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

高光谱数据常见预处理方法有哪些?

创作时间:
作者:
@小白创作中心

高光谱数据常见预处理方法有哪些?

引用
1
来源
1.
http://www.sinespec.cn/news/1134.html

高光谱技术在采集数据时会产生大量波段数据,这些数据在采集过程中会受到仪器和环境的干扰,导致光谱信号存在噪声和基线漂移等误差。为了提高信噪比和模型分类准确性,需要对高光谱数据进行预处理。本文将介绍几种常见的高光谱数据预处理方法。

Norm预处理方法

Norm将数据按比例平移、缩放,使数据统一映射到特定区间内,其目的是消除不同数据单位的限制,让数据具有可比性,避免数据量纲对结果产生的影响。同时也可以使数据的每个特征对模型分析结果做出同样的贡献,便于下一步建模处理。

MSC预处理方法

MSC处理数据之后效果明显,可以提高模型分析结果,因此被广泛用于处理各种物质的原始光谱。由于光在物体表面散射作用不同,生成的光谱曲线也会发生变化,而MSC可以减少由于物体表面颗粒大小分布不均匀引起的散射现象,通过计算样本所有像素点的光谱数据的平均值作为修正光谱,并以此修正减少光谱间由于基线平移导致的差异,对光谱数据校正,有效增强有用的光谱信息。

1st预处理方法

1st对光谱直接求一阶导数,可以表示某个波长的变化率。在数据采集过程中,由于背景颜色还有光照强度等因素会造成一些不可避免的误差,但是通过导数算法可以有效消除由背景漂移造成的干扰,降低误差提高数据分辨率和灵敏度。

SNV预处理方法

SNV与MSC方法类似,主要是减少光照时由于样本颗粒大小以及不均匀造成的表面散射现象。但是SNV的计算核心是假定测量样本的光谱中各个波长的反射率值满足正态分布,并且是针对每条光谱分别进行校正,从而使其尽量接近没有光谱信号误差的理想光谱。

SG预处理方法

SG平滑又称卷积平滑,是基于最小二乘原理的一种预处理算法,被广泛用于数据去噪。通过使用最小二乘法对高阶多项式进行拟合获得加权权重,然后对样本数据进行加权滤波处理。SG能够增加光谱特征的平滑性,保留样本相对极大值和极小值等特性,消除光谱中的高频噪音,减少拍摄过程中的噪音干扰。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号