期货市场中的跨行业动量策略
创作时间:
作者:
@小白创作中心
期货市场中的跨行业动量策略
引用
1
来源
1.
https://quantbuffet.com/zh/2025/01/21/%E6%9C%9F%E8%B4%A7%E5%B8%82%E5%9C%BA%E4%B8%AD%E7%9A%84%E6%A8%AA%E6%88%AA%E9%9D%A2%E5%8A%A8%E9%87%8F%E7%AD%96%E7%95%A5/
该策略交易18种期货合约,包括7种货币、6种股票指数和5种固定收益工具,根据过去六个月的动量表现,选择6种表现最佳的期货做多、6种表现最差的期货做空,并每半年重新平衡。
I. 策略概述
交易范围:
货币期货(7种):如欧元/美元、日元/美元等。
股票指数期货(6种):如标普500、富时100等。
固定收益期货(5种):如美国国债期货等。
排名与分配:
每六个月,根据过去六个月的表现对18种期货进行排名。
做多:表现最好的6种期货。
做空:表现最差的6种期货。
投资组合管理:
投资组合等权分配,确保资金在多头与空头之间均衡分布。
每半年根据最新表现排名重新平衡头寸。
通过定期调整,该策略利用各资产类别中的动量趋势获利。
II. 策略合理性
行为金融学解释:
投资者行为偏差(如羊群效应、过度反应和确认偏差)导致资产价格延续既有趋势,形成动量效应。
宏观经济理论解释:
动量收益可能来自于不同资产在商业周期中价格风险的套利低效性。
结合这两种理论,横截面动量策略捕捉价格趋势,以从市场低效性中获利。
III. 论文来源
The Financial Futures Momentum[点击浏览原文]
- Ayora, Torro, 独立研究员
<摘要>
动量策略是对金融市场效率假设的最著名挑战之一。本文研究了股票指数、货币和固定收益的金融期货在六个月和一年持有期内的动量收益,并发现该策略在高波动性组中收益显著更高。此外,将期货样本按交易量和未平仓合约分为四组时,具有高交易量和低未平仓合约的期货表现出最佳动量收益。研究结果表明,动量策略不仅在多种资产类别中有效,还可通过交易量和波动性等特征进一步优化收益。
</摘要>
IV. 回测表现
指标 | 数值 |
|---|---|
年化收益率 | 6.49% |
波动率 | 12.91% |
Beta | -0.024 |
夏普比率 | 0.5 |
索提诺比率 | -0.032 |
最大回撤 | N/A |
胜率 | 54% |
V. 完整Python代码
from AlgorithmImports import *
class MomentumInFutures(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbols = [
"CME_AD1", # Australian Dollar Futures, Continuous Contract #1
"CME_BP1", # British Pound Futures, Continuous Contract #1
"CME_CD1", # Canadian Dollar Futures, Continuous Contract #1
"CME_EC1", # Euro FX Futures, Continuous Contract #1
"CME_JY1", # Japanese Yen Futures, Continuous Contract #1
"CME_MP1", # Mexican Peso Futures, Continuous Contract #1
"CME_SF1", # Swiss Franc Futures, Continuous Contract #1
"CME_ES1", # E-mini S&P 500 Futures, Continuous Contract #1
"EUREX_FSMI1", # SMI Futures, Continuous Contract #1
"EUREX_FSTX1", # STOXX Europe 50 Index Futures, Continuous Contract #1
"LIFFE_FCE1", # CAC40 Index Futures, Continuous Contract #1
"LIFFE_Z1", # FTSE 100 Index Futures, Continuous Contract #1
"SGX_NK1", # SGX Nikkei 225 Index Futures, Continuous Contract #1
"CME_TY1", # 10 Yr Note Futures, Continuous Contract #1
"CME_FV1", # 5 Yr Note Futures, Continuous Contract #1
"CME_TU1", # 2 Yr Note Futures, Continuous Contract #1
"EUREX_FGBL1", # Euro-Bund (10Y) Futures, Continuous Contract #1
"SGX_JB1" # SGX 10-Year Mini Japanese Government Bond Futures
]
self.period = 6 * 21
self.count = 6
self.SetWarmup(self.period)
# Daily RoC data.
self.data = {}
for symbol in self.symbols:
data = self.AddData(QuantpediaFutures, symbol, Resolution.Daily)
data.SetFeeModel(CustomFeeModel())
data.SetLeverage(5)
self.data[symbol] = self.ROC(symbol, self.period, Resolution.Daily)
self.rebalance_flag: bool = False
self.month = 1
self.Schedule.On(self.DateRules.MonthStart(self.symbols[0]), self.TimeRules.At(0, 0), self.Rebalance)
def on_data(self, data: Slice) -> None:
if not self.rebalance_flag:
return
self.rebalance_flag = False
self.month += 1
if self.month > 6:
self.month = 1
if self.month != 6:
return
# Return sorting.
long = []
short = []
sorted_by_return = sorted(
[x for x in self.data.items() if x[1].IsReady and self.Securities[x[0]].GetLastData() and self.Time.date() < QuantpediaFutures.get_last_update_date()[x[0]]],
key=lambda x: x[1].Current.Value,
reverse=True
)
if len(sorted_by_return) >= self.count * 2:
long = [x[0] for x in sorted_by_return[:self.count]]
short = [x[0] for x in sorted_by_return[-self.count:]]
# Trade execution.
invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long + short:
self.Liquidate(symbol)
for symbol in long:
if data.contains_key(symbol) and data[symbol]:
self.SetHoldings(symbol, 1 / len(long))
for symbol in short:
if data.contains_key(symbol) and data[symbol]:
self.SetHoldings(symbol, -1 / len(short))
def Rebalance(self):
self.rebalance_flag = True
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
_last_update_date: Dict[Symbol, datetime.date] = {}
@staticmethod
def get_last_update_date() -> Dict[Symbol, datetime.date]:
return QuantpediaFutures._last_update_date
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit():
return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
if config.Symbol.Value not in QuantpediaFutures._last_update_date:
QuantpediaFutures._last_update_date[config.Symbol.Value] = datetime(1,1,1).date()
if data.Time.date() > QuantpediaFutures._last_update_date[config.Symbol.Value]:
QuantpediaFutures._last_update_date[config.Symbol.Value] = data.Time.date()
return data
热门推荐
协议与合同有什么区别
雷军的励志人生:从高考状元到科技巨擘
智能充电器使用中如何维护
绘神魔乾坤:《封神》造型设计原画集推出
自行车慢骑的力学分析
我们如何读古诗读后感?解锁古诗之美:我们的阅读心得与方法!
动物解剖与组织胚胎学
美国军队现代化中期报告
Nature Medicine :破解医学影像数据稀缺——生成式AI的全新突破
自己陪自己,无人问津的日子,安静自在
中俄朝三国交界的珲春:沿海却出不去海,未来还能打通出海口吗?
基数算法详解:数制转换、排序与运算
中日粮食进口对比:日本进口2400多万吨粮食,中国每年进口多少?
婚姻家庭法律问答:从非婚生子女权益到房产继承过户
牢记 10 个心电图诊断特征,快速鉴别心律失常!
甲沟炎嵌甲怎么办
激素替代疗法是什么意思
1900年,大国崛起的转折点——探索那个时代的变革与影响
客户反馈收集与分析:倾听客户声音,持续改进
土壤pH值过高改良策略与实践
全球冰封:打造安全屋,囤积物资
了解盎司:发音、定义及其在生活中的多种应用
揭示尼加拉瓜国旗的设计与象征:历史与文化的传承
磨玻璃结节随访时间及建议
云南饵块的制作原料及其主要成分解析:探索这道美食的秘密
从西安到新疆自驾游路线怎么走?最省钱的走法
Web不同VLAN之间通信的多种方法与实践指南
美国留学生活中零花钱的真实情况
《小小的我》背后的"刘春和"们:在诗歌和生活中,握住人生的主动权
第一次洗牙后牙齿真的会变白吗?洗牙的效果与注意事项全解析