问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

MySQL深入浅出MVCC实现原理

创作时间:
作者:
@小白创作中心

MySQL深入浅出MVCC实现原理

引用
CSDN
1.
https://blog.csdn.net/qq10250507350/article/details/140000810

MVCC(多版本并发控制)是MySQL InnoDB存储引擎中用于提高并发性能的关键技术。它通过维护数据的多个版本,使得读写操作不会相互阻塞,从而在保证数据一致性的前提下提升数据库的并发处理能力。本文将深入探讨MVCC的实现原理,包括其核心概念、具体实现机制以及在不同隔离级别下的表现。

前提概要

MVCC 简述

MVCC(Multi-Version Concurrency Control),即多版本并发控制,是一种并发控制的方法。它一般在数据库管理系统中实现对数据库的并发访问,在编程语言中实现事务内存。在MySQL InnoDB中的实现主要是为了提高数据库并发性能,用更好的方式去处理读-写冲突,做到即使有读写冲突时,也能做到不加锁,非阻塞并发读。

当前读和快照读

当前读

select lock in share mode(共享锁)、select for updateupdateinsertdelete(排他锁)这些操作都是一种当前读。为什么叫当前读?因为它读取的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加锁。

快照读

像不加锁的select操作就是快照读,即不加锁的非阻塞读。快照读的前提是隔离级别不是串行级别,串行级别下的快照读会退化成当前读。之所以出现快照读的情况,是基于提高并发性能的考虑,快照读的实现是基于多版本并发控制,即MVCC,可以认为MVCC是行锁的一个变种,但它在很多情况下,避免了加锁操作,降低了开销。既然是基于多版本,即快照读可能读到的并不一定是数据的最新版本,而有可能是之前的历史版本。

当前读,快照读和 MVCC 的关系

准确的说,MVCC多版本并发控制指的是“维持一个数据的多个版本,使得读写操作没有冲突”这么一个概念。仅仅是一个理想概念。而在MySQL中,实现这么一个MVCC理想概念,就需要MySQL提供具体的功能去实现它,而快照读就是MySQL为我们实现MVCC理想模型的其中一个具体非阻塞读功能。而相对而言,当前读就是悲观锁的具体功能实现。要说的再细致一些,快照读本身也是一个抽象概念,再深入研究。MVCC模型在MySQL中的具体实现则是由3个隐式字段、undo日志、Read View等去完成的,具体可以看下面的MVCC实现原理。

MVCC 能解决什么问题

数据库并发场景有三种,分别为:

  • 读-读:不存在任何问题,也不需要并发控制。
  • 读-写:有线程安全问题,可能会造成事务隔离性问题,可能遇到脏读,幻读,不可重复读。
  • 写-写:有线程安全问题,可能会存在更新丢失问题,比如第一类更新丢失,第二类更新丢失。

多版本并发控制(MVCC)是一种用来解决读-写冲突的无锁并发控制,也就是为事务分配单向增长的时间戳,为每个修改保存一个版本,版本与事务时间戳关联,读操作只读该事务开始前的数据库的快照。所以MVCC可以为数据库解决以下问题:

  • 在并发读写数据库时,可以做到在读操作时不用阻塞写操作,写操作也不用阻塞读操作,提高了数据库并发读写的性能。
  • 同时还可以解决脏读,幻读,不可重复读等事务隔离问题,但不能解决更新丢失问题。

数据库采用悲观锁这样性能不佳的形式去解决读-写冲突问题,而提出的解决方案,所以在数据库中,因为有了MVCC,所以我们可以形成两个组合:

  • MVCC + 悲观锁 MVCC解决读写冲突,悲观锁解决写写冲突。
  • MVCC + 乐观锁 MVCC解决读写冲突,乐观锁解决写写冲突。

这种组合的方式就可以最大程度的提高数据库并发性能,并解决读写冲突,和写写冲突导致的问题。

MVCC 实现原理

MVCC的目的就是多版本并发控制,在数据库中的实现,就是为了解决读写冲突,它的实现原理主要是依赖记录中的3个隐式字段、undo日志、Read View来实现的。

隐式字段

每行记录除了我们自定义的字段外,还有数据库隐式定义的DB_TRX_ID、DB_ROLL_PTR、DB_ROW_ID等字段。

  • DB_TRX_ID:6byte,最近修改(修改/插入)事务ID:记录创建这条记录/最后一次修改该记录的事务ID。
  • DB_ROLL_PTR:7byte,回滚指针,指向这条记录的上一个版本(存储于rollback segment里),用于配合undo日志,指向上一个旧版本。
  • DB_ROW_ID:6byte,隐含的自增ID(隐藏主键),如果数据表没有主键,InnoDB会自动以DB_ROW_ID产生一个聚簇索引。

👉 实际还有一个删除flag隐藏字段, 既记录被更新或删除并不代表真的删除,而是删除flag变了。

undo 日志

undo log主要分为两种:

  • insert undo log:代表事务在insert新记录时产生的undo log, 只在事务回滚时需要,并且在事务提交后可以被立即丢弃。
  • update undo log:事务在进行update或delete时产生的undo log;不仅在事务回滚时需要,在快照读时也需要;所以不能随便删除,只有在快速读或事务回滚不涉及该日志时,对应的日志才会被purge线程统一清除。

Read View(读视图)

什么是 Read View

Read View就是事务进行快照读操作的时候生产的读视图(Read View),在该事务执行的快照读的那一刻,会生成数据库系统当前的一个快照,记录并维护系统当前活跃事务的ID(当每个事务开启时,都会被分配一个ID, 这个ID是递增的,所以最新的事务,ID值越大)。

Read View遵循一个可见性算法,主要是将要被修改的数据的最新记录中的DB_TRX_ID(即当前事务ID)取出来,与系统当前其他活跃事务的ID去对比(由Read View维护),如果DB_TRX_ID跟Read View的属性做了某些比较,不符合可见性,那就通过DB_ROLL_PTR回滚指针去取出Undo Log中的DB_TRX_ID再比较,即遍历链表的DB_TRX_ID(从链首到链尾,即从最近的一次修改查起),直到找到满足特定条件的DB_TRX_ID, 那么这个DB_TRX_ID所在的旧记录就是当前事务能看见的最新老版本。

我们可以把Read View简单的理解成有三个全局属性:

  • trx_list(名字我随便取的)
  • 一个数值列表,用来维护Read View生成时刻系统正活跃的事务ID。
  • up_limit_id
  • 记录trx_list列表中事务ID最小的ID。
  • low_limit_id
  • ReadView生成时刻系统尚未分配的下一个事务ID,也就是目前已出现过的事务ID的最大值+1。

RC,RR 级别下的 InnoDB 快照读有什么不同

正是Read View生成时机的不同,从而造成RC,RR级别下快照读的结果的不同:

在RR级别下的某个事务的对某条记录的第一次快照读会创建一个快照及Read View, 将当前系统活跃的其他事务记录起来,此后在调用快照读的时候,还是使用的是同一个Read View,所以只要当前事务在其他事务提交更新之前使用过快照读,那么之后的快照读使用的都是同一个Read View,所以对之后的修改不可见; 即RR级别下,快照读生成Read View时,Read View会记录此时所有其他活动事务的快照,这些事务的修改对于当前事务都是不可见的。而早于Read View创建的事务所做的修改均是可见

而在RC级别下的,事务中,每次快照读都会新生成一个快照和Read View, 这就是我们在RC级别下的事务中可以看到别的事务提交的更新的原因

总之在RC隔离级别下,是每个快照读都会生成并获取最新的Read View;而在RR隔离级别下,则是同一个事务中的第一个快照读才会创建Read View, 之后的快照读获取的都是同一个Read View。

判断条件

Read View遵循一个可见性算法,主要是将要被修改的数据的最新记录中的DB_TRX_ID(即当前事务ID)取出来,与系统当前其他活跃事务的ID去对比(由Read View维护),如果DB_TRX_ID跟Read View的属性做了某些比较,不符合可见性,那就通过DB_ROLL_PTR回滚指针去取出Undo Log中的DB_TRX_ID再比较,即遍历链表的DB_TRX_ID(从链首到链尾,即从最近的一次修改查起),直到找到满足特定条件的DB_TRX_ID, 那么这个DB_TRX_ID所在的旧记录就是当前事务能看见的最新老版本。

  • 首先比较DB_TRX_ID<up_limit_id, 如果小于,则当前事务能看到DB_TRX_ID所在的记录,如果大于等于进入下一个判断。
  • 接下来判断DB_TRX_ID大于等于low_limit_id, 如果大于等于则代表DB_TRX_ID所在的记录在Read View生成后才出现的,那对当前事务肯定不可见,如果小于则进入下一个判断。
  • 判断DB_TRX_ID是否在活跃事务之中,trx_list.contains(DB_TRX_ID),如果在,则代表我Read View生成时刻,你这个事务还在活跃,还没有Commit,你修改的数据,我当前事务也是看不见的;如果不在,则说明,你这个事务在Read View生成之前就已经Commit了,你修改的结果,我当前事务是能看见的。

整体流程

事物1 事物2 事物3 事物4
事务开始 事务开始 事务开始 事务开始
… … … 修改且已提交
进行中 快照读 进行中 …
… … … …

当事务2对某行数据执行了快照读,数据库为该行数据生成一个Read View读视图,假设当前事务ID为2,此时还有事务1和事务3在活跃中,事务4在事务2快照读前一刻提交更新了,所以Read View记录了系统当前活跃事务1、3的ID,维护在一个列表上,假设我们称为trx_list。

Read View不仅仅会通过一个列表trx_list来维护事务2执行快照读那刻系统正活跃的事务ID,还会有两个属性up_limit_id(记录trx_list列表中事务ID最小的ID),low_limit_id(记录trx_list列表中事务ID最大的ID,所以在这里例子中up_limit_id就是1,low_limit_id就是4 + 1 = 5,trx_list集合的值是1,3,Read View如下图

只有事务4修改过该行记录,并在事务2执行快照读前,就提交了事务,所以当前该行当前数据的undo log如下图所示;我们的事务2在快照读该行记录的时候,就会拿该行记录的DB_TRX_ID去跟up_limit_id, low_limit_id和活跃事务ID列表(trx_list)进行比较,判断当前事务2能看到该记录的版本是哪个。

所以先拿该记录DB_TRX_ID字段记录的事务ID4去跟Read View的的up_limit_id比较,看4是否小于up_limit_id(1),所以不符合条件,继续判断4是否大于等于low_limit_id(5),也不符合条件,最后判断4是否处于trx_list中的活跃事务, 最后发现事务ID为4的事务不在当前活跃事务列表中, 符合可见性条件,所以事务4修改后提交的最新结果对事务2快照读时是可见的,所以事务2能读到的最新数据记录是事务4所提交的版本,而事务4提交的版本也是全局角度上最新的版本。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号