LSTM网络参数详解:从基础概念到实战应用
创作时间:
作者:
@小白创作中心
LSTM网络参数详解:从基础概念到实战应用
引用
CSDN
1.
https://blog.csdn.net/baidu_35692628/article/details/137750413
图1 LSTM模型结构可视化 [6]
图2 LSTM cell结构说明
图3 LSTM cell和num_units说明 [4]
图4 LSTM的网络结构
- LSTM
- 是对一个LSTM层的抽象,可以看成是由多个LSTM cell组成,是包含时间步的一个网络
- LSTM cell
- 图2是LSTM在时间步上的结构,结合图3来理解LSTM cell的概念
- 在时间步上cell_1->cell_2->cell_3->…只是一个cell在不同时刻的表现
- 也就是说LSTM cell是某一时刻包含多个隐藏层神经元的结构
- num_layers
- 模型层数(隐藏层)
- LSTM隐藏层/循环层的层数。如图1的隐藏层1和隐藏层2所示
- LSTM结构的个数,即多少个LSTM结构的堆叠。如图2的layer1和layer2所示
- num_layers默认是1,可以设置1~10
- 整个LSTM网络就是: input -> LSTM结构 * n -> output
- num_layers = hidden_num_layers
- feature_size
- 输入x的特征数,number of features in the input x
- feature_size = input_size
- input_size
- 输入维度,输入x的特征数
- input_size = feature_size
- hidden_size
- 隐藏层中隐藏神经元的个数,如图1和图3中所示
- 隐藏层的特征维度,有多少个隐藏神经元就有多少个输出
- 每个隐藏层隐藏节点/神经元个数可以不一样
- num_units
- 隐藏层神经元的个数,见图3所示
- num_units = hidden_size
- output_layer
- 这里指的是还没有加入全连接层或者softmax等层
- LSTM的输出是一个tuple元组
- output后如果要接全连接层,那么全连接层的输入维度 = hidden_size
- time_step
- 时间步,即时间序列长度,见图1和图2中x_t的长度
- number of frames, 帧数
- time_step = sequence_length = 帧数
- node_num
- 图1中T=4,节点数为4
- RNN/LSTM节点数node_num = 序列长度 = time_step = 帧数
- seq_len
- 从实际应用来理解,seq_len指时间序列的长度,目标的历史帧数
- seq_len = 帧数 = time_step
- num_directions
- 1 - 单向LSTM
- 2 - 双向LSTM
- h_t, c_t
- h是隐藏状态,表示短期记忆
- c是细胞状态,表示长期记忆
- h_t: t时刻的隐藏状态hidden state, h_n就是最后一个隐藏神经元的hidden state
- c_t: t时刻的细胞状态cell state, c_n就是最后一个隐藏神经元的cell state
- h_n/c_n的值和序列长度seq_len无关,和num_layers有关
- output_size
- 输出维度
- 和隐藏层数num_layers无关,和序列长度seq_len和隐藏神经元的个数hidden_size有关
- batch_size
- batch: 每次载入一批数据叫一个batch
- batch_size: 一批数据有多少个样本,比如batch_size = 32表示一次载入32个数据
- batch_size: how many samples per batch to load
- batch_first
data_loader的时候没有这个参数,模型定义的时候有这个参数
batch_first:数据组织的方式
batch_first = true:数据batch优先,也就是逐个目标序列的方式存储,如[[a_t1, a_t2, a_t3], [b_t1, b_t2, b_t3]]
batch_first = false:数据seq_len优先,也就是逐个时刻各个目标的方式存储,如[[a_t1, b_t1, c_t1], [a_t2_b_t2, c_t2], [a_t3, b_t3, c_t3]]
batch_first默认是false,pytorch的LSTM默认输入和输出都是batch_size在第二维,也就是优先按seq_len时间顺序排列数据,如下
batch_first默认为false是因为cudnn中rnn的api就是batch_size在第二维度,这也导致batch_first设置为true后训练速度可能会变慢
【batch_first = true】
input(batch, seq_len, input_size)
output(batch_size, seq_len, hidden_size * num_directions)
h0(num_layers * num_directions, batch_size, hidden_size)
c0(num_layers * num_directions, batch_size, hidden_size)
hn(num_layers * num_directions, batch_size, hidden_size)
cn(num_layers * num_directions, batch_size, hidden_size)
- 【batch_first = false】
input(seq_len, batch, input_size)
output(seq_len, batch_size, hidden_size * num_directions)
h0(num_layers * num_directions, batch_size, hidden_size)
c0(num_layers * num_directions, batch_size, hidden_size)
hn(num_layers * num_directions, batch_size, hidden_size)
cn(num_layers * num_directions, batch_size, hidden_size)
- 从上面可以看出,batch_first影响input/output的数据格式,但是对h_t/c_t的格式却没有影响,可以实际打印shape看下
- batch_first不同取值影响到如何寻址访问对应的数据,使用时需注意
【参考文章】
[1].batch_first参数
[2].batch_first参数的理解
[3].batch_first参数的理解
[4].LSTM架构详解
[5].LSTM"门"的原理解析
[6].LSTM模型结构可视化, 推荐
[7].RNN参数解释
[8].LSTM参数
[9].LSTM参数
[10].hidden_size的理解
[11].理解LSTM英文版
热门推荐
成年人结束一段关系,最好的方式:得之坦然,失之淡然
人棉好还是纯棉好?一文读懂两种常见面料的优劣
什么是相机的曝光补偿 曝光补偿怎么用 来看看吧
每天喝一口芝麻油好吗?医生给出专业解答
多家劣质卫生巾品牌被曝光!医生分享“避雷”小妙招
肺上长了“泡泡”怎么办?
古龙写了三个连自己都超越不了的好名字,实在是经典中的经典
室外充电桩的消防安全:设备配置与维护的重要性
女神节:重新审视妇女节的意义与价值
深掘欧楷精髓:从《九成宫》领悟书法艺术的险峻与规整
刺激大闯关最强阵容搭配方案
新乡美食大盘点:九种特色美食,你吃过几个?
乙木缺水怎么补救?缺水身体不好?
用户体验设计中的“痛点”策略
诛九族算什么 夷三族才是历史上最狠的刑法
泡茶用哪种杯子最好? 喝茶的杯子这样选,肯定让你满意
警察处理案件中的公民拍照:权利界定与实践指南
如何选择合适的相机镜头以提高拍摄质量?
八字命理中的"伤官配印"详解
关于沙发的颜色搭配和摆放方式,看下你家适合选怎样的!
唐寅:江南四大才子之首的艺术人生
液压系统的“眼睛”——液压压力传感器的原理及应用
精选文案:简短有味,爱不释手
合法场所:会议室录音证据的重要性
三国志战略版:平民玩家必看的三势法正战法搭配攻略
如何有效缓解宿醉和减少酒后不适的实用建议
四重检测 探究医护级卫生巾质量标准
足三里有什么功效与作用
超实用接线教程:杜比全景声回音壁常见的HDMI连接方式
电脑截图怎么截?这3个基本操作要学会