C++爬楼梯——DFS、递归、动态规划、递推详解
创作时间:
作者:
@小白创作中心
C++爬楼梯——DFS、递归、动态规划、递推详解
引用
CSDN
1.
https://m.blog.csdn.net/2401_88591507/article/details/145271099
本文通过一个经典的爬楼梯问题,详细讲解了DFS、递归、动态规划和递推四种算法思想,并提供了C++代码实现。通过这个例子,读者可以深入理解这些算法的本质和应用场景。
动态规划
动态规划是一种将复杂问题分解为更小的子问题来解决的方法。其核心思想是:
- 分解子问题:将原问题分解为更小的子问题,直到子问题可以直接解决。
- 保存子问题答案:将子问题的答案保存起来,避免重复计算。
- 反推原问题解:根据子问题的答案,逐步推导出原问题的解。
递归
递归是一种通过函数自身调用来解决问题的方法。其过程可以分为两个阶段:
- "递"的过程:分解子问题的过程,自顶向下。
- "归"的过程:产生答案的过程,自底向上。
递归适用于以下情况:
- 问题具有递归结构
- 递归基和递归步骤清晰
- 问题规模适中
- 代码可读性优先
递归与栈的特性相似,遵循"后进先出"的原则。
递推
递推是递归的"归"的过程,通常用于动态规划中。递推公式对应于DFS向下递归的公式,递推数组的初始值对应于递归的边界条件。
记忆化搜索
记忆化搜索是递归的一种优化方法,通过保存已经计算过的子问题结果,避免重复计算。其核心思想是:
- 递归基:问题的最简单形式,可以直接求解。
- 递归步骤:将原问题分解为更小规模的子问题,并通过递归调用自身来解决这些子问题。
例题:爬楼梯问题
题目描述:一个楼梯共有 n 级台阶,每次可以走一级或者两级,问从第 0 级台阶走到第 n 级台阶一共有多少种方案。
输入格式:共一行,包含一个整数 n。
输出格式:共一行,包含一个整数,表示方案数。
数据范围:1≤n≤41
样例:
- 输入 10 输出 89
- 输入 19 输出 6765
- 输入 35 输出 14930352
此题本质就是斐波那契数列,long long类型可以存储下第101项的结果。
代码实现
代码一:DFS暴力搜索
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
using i64 = long long;
int n;
i64 dfs(int x)
{
if(x == 1) return 1;
else if(x == 2) return 2;
else return dfs(x - 1) + dfs(x - 2);
}
int main()
{
cin >> n;
i64 ans = dfs(n);
cout << ans << endl;
return 0;
}
时间复杂度:O(2^n),在n>41时会超时。
代码二:DFS记忆化搜索
通过引入记忆数组mem,将时间复杂度优化到O(n)。
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
using i64 = long long;
const int N = 100;
int n;
i64 mem[N];
int dfs(int x)
{
if(mem[x]) return mem[x];
i64 sum = 0;
if(x == 1) sum = 1;
else if(x == 2) sum = 2;
else sum = dfs(x - 1) + dfs(x - 2);
mem[x] = sum;
return sum;
}
int main()
{
scanf("%d", &n);
i64 answer = dfs(n);
printf("%lld\n", answer);
return 0;
}
代码思路分析:
- 斐波那契数列的定义:F(1)=1,F(2)=2,F(n)=F(n−1)+F(n−2)。
- 递归实现:通过dfs函数计算斐波那契数列的第x项。
- 记忆化搜索:通过数组mem存储已经计算过的斐波那契数列的结果,避免重复计算。
代码三:动态规划
使用迭代方法计算斐波那契数列,避免递归调用。
#include<iostream>
using namespace std;
using i64 = long long;
const int N = 100;
i64 dp[N] = {0};
int main()
{
int n;
cin >> n;
dp[1] = 1;
dp[2] = 2;
for(int i = 3; i <= n; i++)
{
dp[i] = dp[i - 1] + dp[i - 2];
}
cout << dp[n] << endl;
return 0;
}
代码功能说明:
- 使用数组dp存储斐波那契数列的值,避免重复计算。
- 初始化dp[1]为1,dp[2]为2。
- 通过循环计算斐波那契数列的值,直到第n项。
代码四:空间优化
将空间复杂度优化到O(1)。
#include<iostream>
using namespace std;
using i64 = long long;
int main()
{
int n;
cin >> n;
i64 a = 1, b = 2, c;
if(n == 1) cout << a << endl;
else if(n == 2) cout << b << endl;
else
{
for(int i = 3; i <= n; i++)
{
c = a + b;
a = b;
b = c;
}
cout << c << endl;
}
return 0;
}
通过只存储前两项的值,将空间复杂度优化到O(1)。
热门推荐
手机截图小技巧:多种方法任你选,隐私安全需注意!
打卡、野趣、服务...你想要的,这条外环绿道都有~
防火墙的日志管理与分析如何进行?如何通过日志监控网络安全
数学到底在哪里支撑着编程
宋代的绝户财产继承制度究竟是怎样的?
泰州兴化千垛菜花旅游季邀您邂逅浪漫春天
专家称未来七成文学工作量将由人工智能完成,AI会从辅助变主导吗?
深入解析反射型 XSS 与存储型 XSS:原理、危害与防范
公孙龙:中国逻辑学的鼻祖
公孙龙论臧三耳是怎么回事?发生了什么?
passion什么意思?了解‘passion’的中文含义及用法
英国十大城市 英国城市排名 英国有哪些城市
小玩具大学问:如何选择适合宝宝的玩具
双黄蛋和普通鸡蛋哪个更有营养?
双黄蛋和普通鸡蛋哪个更有营养?
如何将PS4手柄连接到电脑并进行设置指南
澳洲地质行业留学条件有哪些
日本皇室的近亲结婚传统
真正的共情,在于做到这4点
怀孕双胞胎都需要哪些营养
婴儿溢奶怎么处理
探索海南大东海:这个热带天堂值得一游吗?
谅解书怎么写才不追究刑事责任?
家庭教育中的自我认知与接纳:培养自信与乐观的关键
阿奇霉素的6种混搭,真的很“致命”
NBA词典 | 持球核心:现代篮球的角色革命
世预赛:沙特队实力不俗,中国队晋级堪忧?沙特VS中国
印度新冠疫情将如何影响中国经济?又会对全球经济产生什么样的影响?
如何理解市场中的主力控盘现象?这种现象对市场有何作用?
揭秘“甲醛大户”:这四样东西全是污染源头,你家甲醛超标了吗?