物联网实时监测:基于 IoT 传感器的数据采集与分析全流程实现
创作时间:
作者:
@小白创作中心
物联网实时监测:基于 IoT 传感器的数据采集与分析全流程实现
引用
CSDN
1.
https://blog.csdn.net/mmc123125/article/details/143933096
在物联网(IoT)领域,实时监测和数据分析是实现智能化的核心技术。通过部署传感器网络,我们可以实时采集环境、设备或过程中的数据,并对这些数据进行分析,为决策提供支持。本文将带你完成一个基于 IoT 的实时监测项目,从传感器数据采集、传输到分析和展示的完整流程。
物联网实时监测的架构概述
物联网实时监测的核心在于数据采集-传输-处理-展示的闭环。以下是一个典型的架构:
- 前端采集层:传感器负责采集物理数据(如温湿度、PM2.5 等)。
- 网络传输层:通过 MQTT 或 HTTP 协议将数据传输至云端或边缘计算节点。
- 数据处理层:服务端对数据进行存储、处理和分析。
- 展示与控制层:通过 Web 或移动应用展示数据,提供控制接口。
传感器数据采集模块实现
硬件选型
以 DHT11(温湿度传感器)为例:
- 特点:支持温湿度测量,精度适中,适合入门项目。
- 连接方式:通过 GPIO 接口与单片机或开发板连接。
采集程序实现
采用 Raspberry Pi 和 Python 实现 DHT11 数据采集:
import Adafruit_DHT
# 配置传感器类型和 GPIO 引脚
sensor = Adafruit_DHT.DHT11
pin = 4 # GPIO4
def read_sensor_data():
humidity, temperature = Adafruit_DHT.read_retry(sensor, pin)
if humidity is not None and temperature is not None:
return {"temperature": temperature, "humidity": humidity}
else:
raise Exception("Failed to read data from sensor.")
# 测试采集
if __name__ == "__main__":
try:
data = read_sensor_data()
print(f"Temperature: {data['temperature']}°C, Humidity: {data['humidity']}%")
except Exception as e:
print(e)
数据传输与边缘计算优化
使用 MQTT 协议
MQTT 是轻量级的发布/订阅协议,适合低带宽场景。以下是数据发送的示例:
import paho.mqtt.client as mqtt
import json
broker = "mqtt.example.com"
port = 1883
topic = "iot/sensor/data"
client = mqtt.Client()
def publish_data(data):
client.connect(broker, port)
client.publish(topic, json.dumps(data))
client.disconnect()
if __name__ == "__main__":
sample_data = {"temperature": 23.5, "humidity": 60.2}
publish_data(sample_data)
边缘计算
在传输前对数据进行预处理(如过滤、聚合),减少带宽压力。
def filter_invalid_data(data):
if data["temperature"] < -10 or data["temperature"] > 50:
return None
if data["humidity"] < 0 or data["humidity"] > 100:
return None
return data
# 示例
raw_data = {"temperature": 25, "humidity": 110}
processed_data = filter_invalid_data(raw_data)
if processed_data:
publish_data(processed_data)
后端数据存储与处理的设计
数据库设计
使用 MongoDB 存储传感器数据:
{
"sensor_id": "sensor_01",
"timestamp": "2024-11-21T10:30:00Z",
"temperature": 22.5,
"humidity": 55.2
}
数据处理 API
基于 Flask 提供查询接口:
from flask import Flask, request, jsonify
from pymongo import MongoClient
app = Flask(__name__)
client = MongoClient("mongodb://localhost:27017/")
db = client.iot_database
@app.route("/data", methods=["GET"])
def get_data():
sensor_id = request.args.get("sensor_id")
data = list(db.sensor_data.find({"sensor_id": sensor_id}))
return jsonify(data)
if __name__ == "__main__":
app.run(debug=True)
实时监测可视化的实现
使用 Chart.js 构建前端页面,实时展示传感器数据:
<!DOCTYPE html>
<html>
<head>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
</head>
<body>
<canvas id="sensorChart" width="400" height="200"></canvas>
<script>
const ctx = document.getElementById('sensorChart').getContext('2d');
const sensorChart = new Chart(ctx, {
type: 'line',
data: {
labels: [], // 时间戳
datasets: [
{
label: 'Temperature (°C)',
data: [],
borderColor: 'rgba(255, 99, 132, 1)',
fill: false
},
{
label: 'Humidity (%)',
data: [],
borderColor: 'rgba(54, 162, 235, 1)',
fill: false
}
]
}
});
// 模拟数据更新
setInterval(() => {
fetch('/data?sensor_id=sensor_01')
.then(response => response.json())
.then(data => {
const timestamps = data.map(entry => entry.timestamp);
const temps = data.map(entry => entry.temperature);
const humids = data.map(entry => entry.humidity);
sensorChart.data.labels = timestamps;
sensorChart.data.datasets[0].data = temps;
sensorChart.data.datasets[1].data = humids;
sensorChart.update();
});
}, 5000);
</script>
</body>
</html>
项目示例:温湿度监测系统全流程代码实现
将采集、传输、存储、处理和展示串联起来,形成一个完整的系统架构:
- 传感器采集:DHT11 + Python GPIO 实现。
- 数据传输:MQTT 协议优化传输效率。
- 后端存储与 API:MongoDB + Flask 提供持久化与查询。
- 前端展示:使用 Chart.js 实现实时监测页面。
总结与扩展:应用场景与未来趋势
通过本文,你可以掌握 IoT 传感器实时监测的完整实现流程,这种架构不仅适用于温湿度监测,还可以扩展到工业设备监测、智能家居等多个场景。
热门推荐
玉泉丸:治疗糖尿病的有效药物,但非“神药”
装修隔断材料有哪些
马鞍山周边自驾游一日游:安徽东大门处的自然风光与人文景点
乌尔善新作《封神第二部》大年初一引爆春节档
《封神第二部》春节档定档,乌尔善揭秘大战细节
春节档大片《封神榜第二部》票房预测:28亿还是30亿?
顶配年味!潮汕英歌舞首次在沪公开表演,上海人都来看闹猛了
被AI偷走声音的配音员,靠什么保住饭碗?
甘蔗种植管理中,主要病虫害及防治技术,确保甘蔗质量
光头强变身打工人《熊出没·逆转时空》十年一剑开启新冒险
熊二配音张茗:为动画世界增添生动色彩
八角桂皮丁香,这样搭配才是绝味!
胡椒:一颗香料如何改变世界文明进程
香料界的三大健康神器:卡宴辣椒、肉桂和孜然
卤水大师教你香料搭配秘籍
从“yyds”到“永远的神”:揭秘网络流行语的传播密码
yyds vs 栓q:2024年最火网络热词之争
“yyds”背后的流量密码揭秘
不好好吃饭 胃癌就有可能找上你
福寿双全:为家中长辈策划一场难忘的生日庆典
福如东海,寿比南山:祝寿老人的吉祥话
辛弃疾李清照教你用古诗词祝寿
福如东海,寿比南山:祝寿老人温馨祝福语
吃过饭之后,如何促进胃部消化?这几种办法或许能帮到你
消化不良的几个常见原因,你中招了吗?
北京协和医院揭秘:免疫丙种球蛋白抗疫真面目
北京协和医院发布免疫丙种球蛋白禁忌症详解
宜昌:发展新质生产力 文旅焕发“新”活力
浅论:姜维对三国时期的影响
洮西之战:姜维的巅峰之战与蜀汉北伐的最后机会