问小白 wenxiaobai
资讯
历史
科技
环境与自然
成长
游戏
财经
文学与艺术
美食
健康
家居
文化
情感
汽车
三农
军事
旅行
运动
教育
生活
星座命理

激光雷达探测器技术详解:从光电效应到SPAD

创作时间:
作者:
@小白创作中心

激光雷达探测器技术详解:从光电效应到SPAD

引用
腾讯
1.
https://new.qq.com/rain/a/20240423A01KES00

激光雷达作为自动驾驶和机器人领域的关键技术,其探测器的工作原理一直备受关注。从光电效应的发现到现代光电二极管的发展,科学家们不断探索如何将光信号转化为电信号。本文将为您详细介绍光电二极管(PD)、雪崩光电二极管(APD)和单光子雪崩二极管(SPAD)的工作原理及其优缺点比较。

探测器遵循的处世之道:来而不往非礼也,激光器发射出去的激光、由探测器进行回礼接收并转化为电信号。这个处世之道的理论基础就是光电效应,而这个效应却源于一个意外的发现。

1886年,海因里希·赫兹(Heinrich Rudolf Hertz),就是那个用实验证明电磁波存在的男人,就是频率单位以他名字命名的男人,真人如图1所示,正在为证实麦克斯韦的电磁理论而专心致志地做电火花放电试验。


图1 赫兹

赫兹的实验装置如图2所示,主要包含电火花发生器和电火花接收器两部分组成。在开关闭合,电压上升到2万伏之后,两个小球之间的空气就会被击穿,产生蓝色电火花,同时引发一个向外传播的电磁波。而在不远处的接收器将感应出一个电动势,同样也在接收器的小球间产生电火花。

图2 赫兹试验装置简图

证实了电磁波存在之后,赫兹又开始通过实验研究起了电磁波的性质,一次偶尔的机会,赫兹用紫外线照射接收器,发现接收器两个小球间更容易产生电火花且电火花更亮。1887年,赫兹在《物理学年鉴》上发表了题为《论紫外光对放电的影响》的论文,揭开了光电效应研究的序幕。

后来这一现象引起了众多物理学家的关注,并在经年累月的试验研究后,还原了这一效应的本来面目。

激光器章节我们介绍过,物质都是由原子组成,而原子是由原子核和绕核运动的电子组成。但这个电子不是一个安分的家伙,在吸收部分能量变得强大之后就会尝试挣脱原子核的束缚选择逃逸,逃逸所需的最小能量被称为逸出功。

所以当外界有一个光子经过电子时,且光子能量大于电子逃逸所需的逸出功时,电子便有一定概率可以挣脱原子核的束缚,逃逸成为一个光电子,并留下孤独的空穴,此过程产生的电子-空穴对被称为光生载流子,这个过程被称为碰撞电离。

需要注意的是,当经过的光子能量恰好等于电子两能级之差时,电子吃掉光子后会由低能级跃迁到高能级,也就是激光器之争部分介绍的受激吸收,电子只是发生能级变化,并不能脱离原子核束缚变成自由电子。

光子的能量由光的频率决定,能使物质中电子逃逸出来的光子频率称为该物质的截止频率或极限频率,所以只有当照射物体的光子频率大于这一极限频率时,才会发生光电效应。

光电二极管

激光探测器正是利用光电效应将光转换为电的一种高灵敏度的半导体电子设备,主要部件就是光电二极管(photodiode,PD)。普通二极管我们比较熟悉,最常见的是由一个PN结加上相应的电极引线及管壳封装而成,具有单向导电性,加上正向电压时,二极管导通, 加上反向电压时,二极管截止。

PD与普通半导体二极管类似,只不过PD工作在反向电压下,且可以暴露在外,通过窗口或光纤连接进行封装,从而使光到达器件的感光部分。

与此同时,PD最常使用的不是PN结,而是PIN结。PIN结相比于PN结,中间多了一个I层,I层是掺杂浓度很低的一层N型半导体,由于浓度低的近乎本征(Intrinsic)半导体,故称I层。

I层较厚,几乎占据了整个耗尽区。绝大部分的入射光子在I层被吸收并产生电子-空穴对(光生载流子)。在I层两侧是掺杂浓度很高的P型和N型半导体,P层和N层很薄,吸收入射光子的比例很小,产生少量的光生载流子。

这种结构可以大大加快光电效应的响应速度,但是过大的耗尽区宽度将延长光生载流子在耗尽区内的漂移时间,反而导致响应变慢,因此耗尽区宽度要合理选择。通过控制耗尽区的宽度可以改变PIN结二极管的响应速度。

在实际使用中,根据反向偏置电压的不同,PD可以工作在三种不同的模式下,即线性模式、比例模式和盖革模式,其中比例模式和盖革模式合起来就是我们说的雪崩模式。普通PD工作在线性模式下,APD和SPAD工作在雪崩模式,如图3所示。


图3 PD三种工作模式

普通PD没有光照时,反向电流很小(一般小于0.1微安),称为暗电流。当有光照时,光子能量被普通PD中的电子吸收,逃逸出来成为光电子,使反向电流线性增大,如图4所示。


图4 PD结构及工作原理

雪崩光电二极管(Avalanche photodiode,APD)

APD工作在雪崩模式下的比例模式,如上面图3所示,表现出有限的增益。

当APD两端反向偏置电压高于雪崩电压小于击穿电压VBD时,耗尽区的电场大小可以使得电子达到离化的阈值。在合适的光子照射下,I区电子吸收能量逃逸出来产生光电子,这个光电子在电场作用下移动,会去碰撞其他的原子,从而产生新的电子-空穴对,如此连锁反应,就像是雪崩了一样,因此被称为雪崩模式,如图5所示。

图5 PAD结构及工作原理

在雪崩模式下,APD电流与电压呈比例关系,具备高增益(1-103倍),在光子照射下电压很小的变化也会导致电流发生较大变化。因此APD是一种灵敏的测量光强的方法,但此灵敏度还不足以检测单个光子。

单光子雪崩二极管(Single photon avalanche diode,SPAD)

SPAD工作在雪崩模式下的盖革模式,如上面图3所示,此时SPAD表现出无限的增益。

当SPAD两端反向偏置电压高于击穿电压VBD时,耗尽区的电场大小不仅可以使得耗尽区电子达到离化的阈值,而且也将使空穴达到离化的阈值,这意味着除了光电子能够移动去碰撞其他原子,产生的空穴也将反向移动去碰撞其他原子,如此循环反馈,引发自我维持的雪崩,如图6所示。


图6 SPAD结构及工作原理

在盖革模式下,SPAD理论上增益可以达到无限大,因此SPAD是一种更灵敏的测量光强的方法,灵敏到可以检测单个光子。

由SPAD工作原理可知道,上述雪崩过程是自维持的,也就是说若没有外界干扰,雪崩将会一直持续下去。那么将产生两个问题,持续毫安级的大电流流经设备,会将设备烧毁;二是无法区分不同时间间隔到来的光子。

解决上述问题的一个方法就是淬灭电路,最简单的一种淬灭电路如图7所示,通过在SPAD串联一个千欧量级的大电阻。当SPAD内部发生雪崩产生大电流后,大电阻的分压作用将使SPAD两端的偏压降级,使其无法继续发生雪崩。

图7 SPAD一种淬灭电路

雪崩过程被终止后,SPAD两端的偏压将会以较快的速度开始充电过程,再将电压提高到可以触发雪崩模式的大小,等待下次光子触发。如此循环往复,形成与光信号对应的脉冲信号。如果将SPAD的输出连接到电压鉴别器,就能产生一个从逻辑0到0的数字信号输出,表示单个光子的到达。

结合图8我们再来详细说明一下淬灭的过程,给SPAD加载使其处于击穿态的偏置电压VBR,并处于亚稳态A点,在此状态下下,当有光子照射时,引起雪崩效应,从而出现电流脉冲(点A到B)。在淬灭电路作用下,偏置电压由B复位到C。而后经过充电过程,反向偏置电压将由C恢复到A,SPAD再次准备探测单个光子。

图8 淬灭工作过程

优缺点比较

(1)探测光子量级。如图9所示,APD最小探测的光子量级在 103,所以对于长距低反只有几十个光子返回的被测物体,APD无能为力。SPAD是单光子探测器,只需要一个光子但也至多检测一个光子,因为每次光子触发雪崩之后,需要几个纳秒的死区时间来准备下一次检测,所以SPAD的最大基数率有限制,大约100MHz。


图9 探测所学光子量级比较

(2)连续信号采集。APD无死区时间,可以对光照进行连续信号采集,连续接收信号光。但是SPAD存在死区时间,即触发一次雪崩后,需要进行淬灭及充电,所需的死区时间从从几纳秒到一微秒不等。在死区时间里,SPAD对光不再敏感,无法接收光子,因此无法对光照进行连续信号采集。

(3)抗环境光干扰。APD需要由多光子触发,虽没有那么灵敏但也受环境光干扰较小。SPAD可由单光子触发,灵敏的同时也较容易受到环境光及其他激光雷达的干扰。

(4)集成难度。硅基SPAD的一大优点就是CMOS兼容性,即SPAD和电路可以在同一晶片上实现,易于制作高分辨率的密集阵列且成本较低。而APD属于分立器件,想要用作阵列就会加大自身尺寸且价格较高。

(5)光电增益高。SPAD的光电增益可以说是无限的,高增益让SPAD更为敏感,可以检测出单个光子。而APD的光电增益是有限的,无法对单光子进行检测。

(6)时间精度高。SPAD的时间精度可达100ps,信号传输速度快。

小结

因为入局门槛太高,所以研发SPAD的企业数量少、产品稀缺,核心技术还是掌握在国外供应商手里。目前市面上真正可以看到的车规级传感器,只有安森美的Padion SPAD和索尼的IMX459,而在中国市场,阜时科技、灵明光子、芯辉科技、宇称电子等也在布局研发SPAD,主要专注的市场还是在机器人、无人机等领域,部分企业开始推出车载产品。

© 2023 北京元石科技有限公司 ◎ 京公网安备 11010802042949号