SEM扫描电镜参数调整指南:如何拍出高质量图片?
SEM扫描电镜参数调整指南:如何拍出高质量图片?
扫描电子显微镜(SEM)是材料科学、生物学等领域的重要研究工具。要获得高质量的SEM图像,除了操作经验和样品制备外,还需要对SEM的参数进行精细调整。本文将详细介绍SEM扫描电镜参数调整的关键要素,包括加速电压、光阑、束斑尺寸、工作距离和图像衬度与亮度等,帮助用户优化成像效果。
为什么要调整SEM扫描电镜参数?
优化SEM图像质量需要调整多个关键参数:
- 优化图像质量:通过调整参数,可以获得更清晰、更详细的图像。
- 适应样本特性:不同的样本可能需要不同的参数设置。
- 提高分辨率:以更好地分辨样本的微观结构。
- 控制电子束强度:避免对样本造成过度损伤。
- 调整衬度:增强图像的衬度,便于观察。
- 优化景深:使整个样本都能清晰成像。
- 适应不同的放大倍数:确保在不同放大倍数下都能获得良好的图像。
关键参数详解
1.1 加速电压
理论上,加速电压的增加将使SEM图像中的信号更多、噪声更低。但实际情况并非如此简单:
- 高加速电压成像有一些缺点:
- 高加速电压可穿透较厚的样品,但在SE模式下,对样品表面结构细节的分辨能力降低,低加速电压则适用于表面成像
- 绝缘样品中的电子堆积增加,造成更严重的充电效应
- 在样品中传导的热量会增加,可能导致样品损伤,尤其是对热敏感的材料
加速电压越高,电子束穿透力越强,相互作用体积越大,背散射电子(BSE)的数量也会增加。对于典型电压(如15KV)下的二次电子(SE)成像,BSE会进入二次电子探测器,并降低分辨率,因为它们来自样品的更深处。
加速电压是灯丝和阳极之间的电压差,主要用于加速电子束向阳极移动。典型SEM的加速电压范围为1KV至30KV。电压越高,电子束穿透样品的能力就越强。
下表中提供了选择加速电压的一般操作指南。当然,不同的电镜设备,即使参数相同,成像效果也会有差异,要确定样品成像的最佳设置,需要进行实践操作。
1.2 光阑
光阑是金属条上的一个小孔,它被放置在电子束的路径上,以限制电子沿镜筒向下运动。光阑可阻止偏离轴线或能量不足的电子沿柱子向下运动。根据所选光阑的大小,它还可以缩小光阑下方的电子束。
物镜 (OL) 光阑:该光阑用于减少或排除外来(散射)电子。操作员应选择最佳的光阑,以获得高分辨率的SE图像。
物镜光阑安装在SEM物镜的上方,是一根金属杆,用于固定一块含有四个孔的金属薄板。在它上面装有一个更薄的矩形金属板,上面有不同大小的孔(光阑)。通过前后移动机械臂,可以将不同大小的孔放入光束路径中。这都限于老式扫描电镜,现代电镜通过静电偏转到想要的孔,不是机械移动。
大光阑可用于低倍成像以增加信号,也可用BSE成像和EDS分析工作。小光阑用于高分辨率工作和更好的景深,但缺点是到达样品的电子较少,因此图像亮度和信噪比较低。
下表列出了一些光阑大小和实际用途的例子。不同光阑可使用数字刻度。例如,可以使用1、2、3和4。根据仪器的不同,可以用最大的数字表示最大的光阑直径,也可以用最大的数字表示最小的光阑。
在SEM设备校准过程中,为了生成良好的图像,需要检查光阑,以确保其围绕光束轴居中,这可以通过使用晃动(Wobbler)控制来实现。如果发现图像左右移动,则需要在X 或Y方向(进出或左右移动)调整光阑,调整时只需微微旋转相应的旋钮,直到图像停止移动为止。当电子束直径在样品表面达到最小值时,聚焦效果最佳。图像应清晰明确。
1.3 束斑尺寸
电子束锥在样品表面形成的束斑大小(横截面直径)会影响:
- 图像的分辨率
- 产生的电子数量,从而影响图像的信噪比和清晰度
在低倍放大时,我们使用的束斑尺寸要比高倍放大时大。
当在相同的放大倍率、电压和工作距离下使用不同的束斑尺寸拍摄图像时,很容易看出不同系列图像在模糊度(分辨率)上的差异。表达束斑大小的方式取决于所用电镜的厂家和型号。
对于任何一个放大倍率,停留点(图中一行中的光点)的数量都是恒定的,因此束斑点尺寸太小会导致没有信号产生的间隙,束斑尺寸太大会导致信号重叠和平均。
束斑尺寸会随着一些参数的改变而改变。例如,长工作距离(WD)下的束斑尺寸比短WD的大。物镜光阑越小,束斑尺寸越小。此外,无论使用哪种WD,聚光透镜流过的电流越大(激励强,聚焦效果好),样品上的束斑就越小。
因此,当WD较小、聚光透镜激励较高、光阑较小时,我们就能实现最小的束斑尺寸。这三个参数是相互影响的,需要仔细权衡,才能获得最佳图像,因为它们还会影响其他参数,如焦距和电子信号强度。
1.4 工作距离(WD):分辨率与景深
样品工作距离 (WD)是指SEM镜筒极靴底部与样品顶部之间的距离。在样品室中,样品台可以上升到更靠近极靴的一端(工作距离短),也可以下降到更低的位置(工作距离长)。
工作距离越短,样品表面的电子束直径就越小。因此,在可能的情况下,工作距离应保持在10毫米或更小,以获得高分辨率成像。但小工作距离的缺点是,会大大降低景深。虽然可以通过使用较小的物镜光阑来抵消这种不利因素,但同时也带来电子束流密度的降低(图像看起来颗粒感更强,不够细腻)。
备注:对于ET探测器来说,缩短WD带来高分辨率的效果是不够显著的。对于大部分镜筒内电子探测器,缩短WD能显著提高分辨率。这也是我们经常看到,高倍数的照片都是在短WD下拍摄的,极端情况下,WD可以<1mm。
在许多 SEM 中,外部工作距离 (Z) 控制杆可用于升高或降低试样,该值通常被误认为是准确的工作距离。然而,真正的工作距离(WD)是以电子方式测量的,即样品表面聚焦点到极靴下表面的距离。外部Z控制(机械控制)值与图像屏幕上提供的 WD 值不同有三个原因。
只有当电子束准确聚焦到试样表面时,"屏幕上"的 WD 值才是准确的测量值。聚焦不足或聚焦过度的图像会提供虚假的WD值以及模糊的图像。
外部Z值和准确聚焦试样的真实 WD值会有所不同,因为这两个测量值可能是从试样架上的不同点测量的。试样如果不是均匀平整的,不同的形貌特征会有不同的真实WD。
WD会影响SEM图像的景深和分辨率。随着WD的增加,电子束发散角会减小,从而提供更大的景深。增加WD的"代价"是,电子束必须从扫描移动更远的距离,因此在试样上的束斑尺寸更大。
景深是指试样在肉眼看来可接受的聚焦垂直范围。在SEM中,图像景深的 "范围 "通常比光学显微镜大上百倍,因此许多SEM显微照片几乎都是三维的。
1.5 图像的衬度和亮度
SEM图像是根据从样品材料中射出的电子数来构建的强度图(数字或模拟)。SEM中每个驻留点的电子信号以像素的形式在屏幕上逐行显示,从而形成图像。每个点的信号强度反映了从形貌或成分中产生的电子多少。通过信号处理,每个电子的信号信息(从光束的每个驻留点获得)都可以在显示之前被转换成与原始值有严格关系的新值。这样,我们就可以通过调整信号来改变最终图像的衬度和亮度。
在大多数情况下,未经处理的图像包含足够的"自然衬度",操作员可以从图像中提取有用的信息。自然衬度可被视为直接来自样品和探测器系统的信号中包含的衬度。如果自然衬度过低或过高,则可能会丢失与重要细节相对应的信号变化。
在这种情况下,我们会看到图像中有很多黑色或白色区域。质量好的图像具有灰度渐变,只有极少部分是全黑或全白的。信号处理技术可以处理自然衬度,使眼睛可以通过图像中的衬度感知信息。虽然信号处理技术允许用户对自然衬度进行处理,但并没有增加信息,只是增强了已有的信息(因此,这种图像处理技术不属于对已有信息的篡改)。
以下这幅图像左侧衬度太低,右侧衬度太高,中间的图像衬度是合适的。左边的图像可以后期调整,方法是在Photoshop软件中修改灰度"色阶"的分布,但右图像无法修正,因为纯黑白区域是绝对的(无法从这些区域获取更多数据)。
应该注意的是,信号处理会极大地改变图像的外观,使其与通常预期的不同,因此SEM操作员有义务说明是否进行了处理。不过,通常情况下,使用衬度和亮度旋钮调整图像质量是被认可的图像处理流程。但是,如果为了使SEM图像看起来更清晰而进行了一些其他处理,则应在正式报告中说明具体的处理的方式。
旧型号的SEM一般都需要手动调整衬度和亮度。更现代的机器则依靠软件程序自动调节,辅以机器操作员的喜好:一键操作,提高工作效率。但需要注意的是,人眼对图像衬度和亮度的感知或审美,往往和软件计算的结果并不一致,因为为了更好的图片质感,还需要依赖手动调节。
倾斜样品可以增加SE衬度:增加SE衬度的另一种方法是倾斜样品,使其与探头成一定角度(通常为 30° 至 60°)。倾斜的结果是,每单位投影试样面积会产生更多的 SE,从而使亮部和暗部的分布更加明显,从而增强衬度。