一文搞明白时序数据输入到LSTM模型的格式(案例解读)
创作时间:
作者:
@小白创作中心
一文搞明白时序数据输入到LSTM模型的格式(案例解读)
引用
CSDN
1.
https://m.blog.csdn.net/sinat_41858359/article/details/138646611
一、引言
本文将详细介绍时序数据输入到LSTM模型的格式,通过单变量和多变量时序数据两个案例进行详细解读。内容包括数据预处理、滑动窗口创建、模型构建和训练等关键步骤,配有具体代码示例和数据形状说明。
二、实现过程
2.1 单变量时序数据
1、原始data
原始数据是一个144行1列的(144,1)的dataframe:
2、数据集按照8:2划分,并进行归一化处理
train_data_scaler是一个(115,1)的二维数组:
3、创建滑动窗口数据集
将train_data_scaler集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数):
def create_sliding_windows(data, window_size):
X, Y = [], []
for i in range(len(data) - window_size):
X.append(data[i:i+window_size, 0:data.shape[1]])
Y.append(data[i+window_size,0])
return np.array(X), np.array(Y)
X_train, Y_train = create_sliding_windows(train_data_scaler, window_size)
这里假设窗口window_size设为12,i的范围0-102,103取不到:
- 当i=0时,取出train_data_scaler第【1-12】行第【1】列的12条数据作为X_train[0],取出train_data_scaler第【13】行第【1】列的1条数据作为Y_train[0];
- 当i=1时,取出train_data_scaler第【2-13】行第【1】列的12条数据作为X_train[1],取出train_data_scaler第【14】行第【1】列的1条数据作为Y_train[1];
- ...
- 当i=102时,取出train_data_scaler第【103-114】行第【1】列的12条数据作为X_train[102],取出train_data_scaler第【115】行第【1】列的1条数据作为Y_train[102];
返回的X_train是一个(103,12,1)的三维数组;Y_train是一个(103,1)的二维数组;
X_train = np.reshape(X_train, (X_train.shape[0], window_size, 1)
经过滑动窗口之后返回的形状已经是LSTM所需的形状了,所以这句话可以省略。
4、构建 LSTM 模型
# 构建 LSTM 模型
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(window_size, 1)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
LSTM的input_shape=(时间步长,特征数),其实就是一个样本输入的形状。
5、训练 LSTM 模型
# 训练 LSTM 模型
model.fit(X_train, Y_train, epochs=100, batch_size=32)
- X_train是一个(103,12,1)的三维数组,三个维度分别表示(样本数,时间步长,特征数)
- Y_train是一个(103,1)的二维数组,两个维度分别表示(样本数,标签)
- 类似一个103行(121+1)列的表格,前(121)列是特征,第(12*1+1)列是标签
2.2 多变量时序数据
1、原始的data
是一个(5203,5)的dataframe:
2、数据集按照8:2划分,并进行归一化处理
train_data_scaler是一个(4162,5)的二维数组:
3、创建滑动窗口数据集
将数据集转换为 LSTM 模型所需的形状(样本数,时间步长,特征数):
def create_sliding_windows(data, window_size):
X, Y = [], []
for i in range(len(data) - window_size):
X.append(data[i:i+window_size, 0:data.shape[1]])
Y.append(data[i+window_size,0])
return np.array(X), np.array(Y)
X_train, Y_train = create_sliding_windows(train_data_scaler, window_size)
这里假设窗口window_size设为30,i的范围0-4131:
- 当i=0时,取出train_data_scaler第【1-30】行第【1-5】列的12条数据作为X_train[0],取出train_data_scaler第【31】行第【1】列的1条数据作为Y_train[0];
- 当i=1时,取出train_data_scaler第【2-31】行第【1-5】列的12条数据作为X_train[1],取出train_data_scaler第【32】行第【1】列的1条数据作为Y_train[1];
- ...
- 当i=4131时,取出train_data_scaler第【4132-4161】行第【1-5】列的12条数据作为X_train[4131],取出train_data_scaler第【4162】行第【1】列的1条数据作为Y_train[4131];
返回的X_train是一个(4132,30,5)的三维数组;Y_train是一个(4132,1)的二维数组;
X_train = np.reshape(X_train, (X_train.shape[0], window_size, 5)
经过滑动窗口之后返回的形状已经是LSTM所需的形状了,所以这句话可以省略。
4、构建 LSTM 模型
# 构建 LSTM 模型
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(window_size, 5)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
LSTM的input_shape=(时间步长,特征数),其实就是一个样本输入的形状。
5、训练 LSTM 模型
# 训练 LSTM 模型
model.fit(X_train, Y_train, epochs=100, batch_size=32)
- X_train是一个(4132,30,5)的三维数组;(样本数,时间步长,特征数)
- Y_train是一个(4132,1)的二维数组;(样本数,标签)
- 类似一个4132行(305+1)列的表格,前(305)列是特征,第(30*5+1)列是标签
三、小结
由于滑动窗口,实际的训练数据数量少一个窗口数量,实际能预测的数据量也少一个窗口数量。
热门推荐
科普 | 氢的种类以及制氢方式
热播剧评 | 李徽昭:电视的归电视,小说的归小说——关于电视剧《北上》
ADB环境搭建(Android SDK下载安装(_指定版本))
木地板和瓷砖接缝处理方法及注意事项
办公手写数字字体有哪些种类?
sql中sp是什么意思
CPU调度算法之彩票调度(Lottery Scheduling)
你知道三聚磷酸钠在混凝土外加剂中的用途吗?
别争了!毛发专家告诉你洗头的3个真相
S蛋白,新冠病毒入侵细胞的关键
Nature | 倪涛/袁硕峰合作解析冠状病毒DMV孔复合物结构
600MW超临界机组汽轮机进水和进冷气防止措施
驾驶证年审需要延期吗
如何通过“交管12123” 办理驾驶证“延期”类业务?
00后必看:23句经典青春励志名言
慧开禅师:春有百花秋有月,夏有凉风冬有雪
附招办联系方式丨中国海洋大学2024年本科招生章程
如何使用数据库筛选基因
“牛奶性寒,体寒的人喝了会伤脾胃”?
地理鼻祖——包罗万象的《水经注》
技术解析:凯迪拉克XT5和沃尔沃XC60的豪华SUV较量
微波炉一级能效和二级能效,哪个更好?
TPM与MTBF的计算方法及应用
液态金属导热材料:高效散热的未来利器!
备孕人群容易忽视的酒精影响,严格戒烟酒对健康生育的重要性!
CRM如何提升成功率
普通高考考试大纲修订内容
数字时代艺术创作的新形式与情感表达的创新
我国高中生在校失踪案件频发,家庭、学校和社会需共同努力
盲人手机导航:科技之光引领无障碍出行新纪元