AI绘画Stable Diffusion【人物三视图】:角色三视图的制作教程
创作时间:
作者:
@小白创作中心
AI绘画Stable Diffusion【人物三视图】:角色三视图的制作教程
引用
CSDN
1.
https://m.blog.csdn.net/coo123_/article/details/142846137
在AI绘画领域,制作人物三视图是一项常见的需求。本文将详细介绍三种实现方式:通过提示词实现、借助三视图LORA模型以及使用ControlNet的openpose模型。每种方法都包含了具体的参数设置和示例图片,帮助读者快速掌握这项技能。
实现方式一:通过提示词实现
三视图提示词格式:
(three views of character:1.2),
(three views of the same character in the same outfit:1.2),
full body,
front,
side,
back,
front view,
side view,
back view,
front view of girl,
side view of girl,
back view of girl,
【主体描述】 simple background,
white background,
masterpiece,
best quality
示例
- 大模型:IP DESIGN | 3D可爱化模型 V4.0
- 正向提示词(主体描述关键词):
Prompt:1girl,blonde hair,long hair,princess peach,blue eyes,lips,eyelashes,earrings,crown,hood,casual 提示词:1个女孩,金发,长发,桃公主,蓝眼睛,嘴唇,睫毛,耳环,皇冠,兜帽,休闲 - 反向提示词:
nsfw,lowres,bad anatomy,bad hands,text,error,missing fingers,extra digit,fewer digits,cropped,worst quality,low quality,normal quality,jpeg artifacts,signature,watermark,username,blurry,artist name - 采样器:Euler a
- 采样迭代步数:25
- 图片宽高:768*512
- CFG:7
相关说明:
- 这种实现方式可控性不太好,需要大量抽签才能抽到符合要求的图片。
- 如果出现生成不了三视图中某个视图效果,可以适当提高一下该视图的提示词权重。
实现方式二:借助三视图LORA实现
我们可以在liblibAI的官网,通过关键词"三视图"搜索到相关的LORA。这里有很多支持各种不同风格的三视图LORA模型。这里我们以使用量最大的mw_3d角色ip三视图q版 LORA为示例讲解。该lora模型有支持SDXL大模型的尝鲜版(V2.0.1)和支持SD1.5大模型的版本(最新版V1.1)。
示例
- 大模型:SDXL_1.0
- 正向提示词:
Prompt:mw_sanshitu,full body,mermaid,simple background,standing,lora:mw_3d角色ip三视图q版_2.0.1:0.9 提示词:Mw_sanshitu,全身,美人鱼,简单背景,站立 - 反向提示词:
easynegative,dark,bad hands,bad feet,worst quality,low quality,normal quality,bad artist,bad anatomy,blurry - loar:lora:mw_3d角色ip三视图q版_2.0.1:0.9
- 采样器:Euler a
- 采样迭代步数:25
- 图片宽高:1024*768
- CFG:7
上面我们没有加三视图的视角关键词,我们把视角关键词添加一下:
Prompt:mw_sanshitu,full body,front view,side view,back view,mermaid,simple background,standing
相关说明:
这种方式对于创作三视图来说,是相当不错的实现方式,但是没有办法准确的控制主体的姿势。三视图的视角仍然是随机的,虽然可以通过提示词来控制,但是还是需要抽签概率。
实现方式三:使用ControlNet的 openpose模型
这种实现方式主要是通过ControlNet的Openpose插件可以实现人物姿势自由控制,我们借助这个插件生成的3种不同视角的人体姿势,从而达到精准控制人物姿势的3视图效果。
第一步:制作一张人物三视图的特征图片
下面这张三视图的特征图片分别对应人物的:正面、侧面、背面。
相关说明:对于我们来说制作三视图的特征图片并不容易,我们可以在LiblibAI网站或者C站上找一张三视图的真人图片,然后在ControlNet中使用Openpose模型的Openpose预处理器生成一张三视图的特征图片。具体操作如下。
第二步:大模型选择、提示词编写、相关参数设置
- 大模型:AWPortaint V1.4
- 正向提示词:
Prompt:(three views of character:1.2),(three views of the same character in the same outfit:1.2),1girl,long hair,wear school uniform,a proud and confident smile expression,studio fashion portrait,studio light,pure white background, 提示词:1个女生,长发,穿着校服,带着骄傲自信的微笑表情,工作室时尚肖像,工作室灯光,纯白色背景 - 反向提示词:
ng_deepnegative_v1_75t,(badhandv4:1.2),(worst quality:2),(low quality:2),(normal quality:2),lowres,bad anatomy,bad hands,((monochrome)),((grayscale)) watermark,moles,large breast,big breast, - 采样器:DPM++ 2M Karras
- 采样迭代步数:30
- 图片宽高:768*512
- CFG:7
- 高分辨率修复:放大算法Lanczos,重绘幅度0.4 重绘采样步数30
- Adetailer插件:脸部模型 face_yolov8n
第三步:ControlNet Openpose模型设置
相关参数设置如下:
- 控制类型:选择"OpenPose(姿态)"
- 预处理器:none (由于上传的是三视图特征图,这里就不需要再设置预处理器了)
- 模型:control_v11p_sd15_openpose
第四步:图片的生成
相关说明:
- 使用ControlNet的openpose模型制作的三视图相对来说最稳定,每次都可以出三视图的效果。
- 这种方式可以实现其他任意视图,不仅仅局限在三视图。
总结
上面分享目前最常用的制作三视图的三种方法,在实际应用中,大家可以综合几种方法一起使用,比如结合实现方式二和三,在不同的场景可能会带来更好的效果。
热门推荐
材料性能与温度的关系有哪些?
崂山区第二实验小学与香港、澳门学校开展线上读书交流活动
催收电话法律规定的全面解析:我国催收电话的法律规定及其影响
《低血糖生成指数(GI)食品通用技术要求》团体标准正式发布
药盒上怎么判断处方药?药过敏责任如何判定?药盒作为证据有何作用?
竞业协议的有效期限如何设定
木耳不焯水直接炒能吃吗?木耳直接炒有风险!
为何国外影视剧中爱用"creature"来骂人?
马斯克的迭代思维:快速搞砸,迅速成功!
高龄产妇有哪些问题?一文详解35岁以上孕妇的健康风险
文昌塔用桃木和铜哪种材质更好?桃木和铜在文昌塔中的优缺点对比
HND机场全解析:东京羽田国际机场的前世今生与运营现状
什么情况下,需要吃叶酸补充剂?
失眠背后的心理问题及解决之道
常熟市十大旅游景点推荐
星座与幸运数字:揭秘每个星座的吉祥数字
王者荣耀赛季末最强对抗路英雄推荐:四位英雄助你轻松上分
房产个税计算方法及相关费用详解
去年中国网络文学作者达1936万人,平均月收入5133元
框架结构房屋造价预算的构成与分解
使用蒙特卡罗模拟的投资组合优化
微信为何会对部分用户进行频繁的安全验证?
脚趾内有淤血一直不消除怎么办
人体关节大揭秘:常见类型知多少
南美世预赛第14轮战罢:阿根廷提前出线,巴西遭双杀跌至第4
影视行业面临关键转折,2025如何更好发展?
深度解析QS世界大学排名:可信度与局限性全解读
如何处理发动机缸盖的腐蚀问题?处理腐蚀问题的措施有哪些 ...
2025年中医执业医师实践技能考试时间及内容详解
医学科普如何做得让老百姓更明白?这是正确的打开方式