机器学习中的数据拟合方法:最小二乘法详解
创作时间:
作者:
@小白创作中心
机器学习中的数据拟合方法:最小二乘法详解
引用
CSDN
1.
https://m.blog.csdn.net/IT_ORACLE/article/details/145161876
最小二乘法是一种广泛使用的数据拟合方法,用于在统计学和数学中找到最佳拟合曲线或模型,使得观测数据点与模型预测值之间的误差平方和最小化。本文将详细介绍最小二乘法的基本概念、线性最小二乘法的数学推导和代码实现,以及非线性最小二乘法的扩展应用。
基本概念
假设有一组观测数据点,希望找到一个模型 y = f(x),使得模型预测值与实际观测值的误差最小。定义误差为:
最小二乘法的目标是最小化误差平方和:
线性最小二乘法
最常见的情况是线性模型,即。通过最小化平方误差,计算出最佳拟合的参数 a 和 b。
目标函数:
求解公式:通过对 S 分别对 a 和 b 求偏导并令其为 0,得到方程组:
解得:
其中,和分别是和的平均值。
- 代码实现:
import numpy as np
import matplotlib.pyplot as plt
# 示例数据
x = np.array([1, 2, 3, 4, 5]) # 自变量
y = np.array([2.2, 2.8, 3.6, 4.5, 5.1]) # 因变量
# 计算最小二乘法参数
n = len(x)
x_mean = np.mean(x)
y_mean = np.mean(y)
# 根据公式计算斜率和截距
b = np.sum((x - x_mean) * (y - y_mean)) / np.sum((x - x_mean) ** 2)
a = y_mean - b * x_mean
print(f"拟合直线方程:y = {a:.2f} + {b:.2f}x")
# 使用拟合直线进行预测
y_pred = a + b * x
# 绘制散点图和拟合直线
plt.scatter(x, y, color="blue", label="实际数据点")
plt.plot(x, y_pred, color="red", label="拟合直线")
plt.xlabel("x")
plt.ylabel("y")
plt.legend()
plt.title("最小二乘法线性回归")
plt.show()
运行结果
- 输出拟合直线方程:
拟合直线方程:y = 1.39 + 0.75x
- 绘制图形:
- 蓝色散点表示原始数据。
- 红色直线表示最小二乘法拟合的直线。
扩展:非线性最小二乘法
如果模型 f(x) 是非线性的(如指数、对数、幂函数等),需要使用数值优化方法(如梯度下降、牛顿法)求解最优参数。常用软件工具(如 MATLAB、Python 的 SciPy 库)提供了实现非线性最小二乘法的函数。
使用 SciPy 实现非线性最小二乘法
如果你的模型是非线性的(例如 y=aebxy = a e^{bx}y=aebx),可以使用 SciPy 的curve_fit方法:
代码实现
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号'-'显示为方块的问题
plt.rcParams['axes.unicode_minus'] = False
# 示例数据
x = np.array([1, 2, 3, 4, 5])
y = np.array([2.7, 7.4, 20.1, 54.6, 148.4]) # 模拟非线性数据
# 定义非线性模型,例如 y = a * e^(b * x)
def model(x, a, b):
return a * np.exp(b * x)
# 拟合模型
params, _ = curve_fit(model, x, y)
a, b = params
print(f"拟合非线性方程:y = {a:.2f} * exp({b:.2f} * x)")
# 使用模型预测
y_pred = model(x, a, b)
# 绘制结果
plt.scatter(x, y, color="blue", label="实际数据点")
plt.plot(x, y_pred, color="green", label="拟合曲线")
plt.xlabel("x")
plt.ylabel("y")
plt.legend()
plt.title("非线性最小二乘法拟合")
plt.show()
运行结果
- 输出拟合非线性方程:
拟合非线性方方程:y = 1.00 * exp(1.00 * x)
- 绘制图形:
- 蓝色散点表示实际数据点。
- 绿色曲线表示非线性模型的拟合结果。
应用领域
- 回归分析:在统计学中用于构建线性或非线性回归模型。
- 曲线拟合:在实验数据中寻找最佳拟合曲线。
- 信号处理:用于去噪和数据预测。
- 机器学习:作为线性模型训练的一部分,例如线性回归。
优点与局限性
优点:
- 方法简单且计算效率高。
- 适用于多种模型,尤其是线性模型。
局限性:
- 对离群点敏感:极端值可能显著影响拟合效果。
- 仅适用于误差为高斯分布的情形:当误差不服从正态分布时,结果可能不可靠。
热门推荐
养老保险政策三角关系图:政府、企业和个人的利益平衡
男人的三种深层需求,你真的了解吗?
小程序免备案:快速部署与优化的全攻略
汽车汽油表应如何正确查看?查看汽油表时需留意哪些方面?
《甄嬛传》最狠伏笔藏在皇上遗言里!宜修背锅十年,纯元死有隐情
解离症的六大表现
陕西省的五大煤田、主要矿区与代表性煤矿
离婚证据如何使用手机?分居多久算自动离婚?离婚后财产如何分配?
如何避免数据库错误
2025年房产个税和契税怎么算的?
北海道经典一日游推荐,4条线路让你玩转四季美景!
完美犯罪构成:法律领域中的理论与实践
研究发现用枫糖浆替代精制糖可改善心脏代谢风险因素和肠道健康
Mac终端配置教程:全网最详细Powerlevel10k安装与配置指南
江津区四牌坊小学:幼小协同 科学衔接 为儿童成长赋能
家乡的味道:一道烩粉皮里的乡愁记忆
如何在WPS中批量处理图片
法考A/B/C证的区别!
什么叫强迫行为
喷辣椒水抓罪犯违法吗
比收入,要比收入在GDP中的占比:不在穷富,在有心
大数据时代,如何了解消费者需求,进行消费者研究?
瑜伽初学者如何逐步掌握莲花座
拔智齿后几天恢复正常
体检季来了,体检前,应该做哪些准备?
评估报告的有效期是多久?房屋拆迁评估流程全解析
小儿遗尿需要做哪些检查确诊
如何通过进度跟踪提高工作效率?
新疆昌吉回民小吃街:美食与文化的完美融合
海南三亚市场里哪里买海鲜更便宜实惠?