GNSS 地球自转改正算例分析
创作时间:
作者:
@小白创作中心
GNSS 地球自转改正算例分析
引用
CSDN
1.
https://blog.csdn.net/Gou_Hailong/article/details/138243773
文章目录
- Part.I Introduction
- Part.II 由地球自转引起的误差的概念和改正方法
- Chap.I 误差概念
- Chap.II 改正方法
- Part.II 算例分析
- Chap.I 基础数据
- Chap.II 计算过程
- Appendix
- Reference
Part.I Introduction
为了更好地理解地球自转改正,本文将介绍一个算例。
Part.II 由地球自转引起的误差的概念和改正方法
Chap.I 误差概念
如下图所示,假设在t0时刻,卫星的在ECEF0下的坐标为(X0S, Y0S, Z0S),此时它发射了一个信号。信号穿越层层大气,最终在t1时刻到达地球,被接收机所接收,此时接收机在ECEF1下的坐标为(XR1, YR1, ZR1)。所有的计算都是在ECEF1下开展的,存在这样一个矛盾,因此将其称之为地球自转引起的一个误差项。
Chap.II 改正方法
改正方法有两种
- §1 改正坐标:将卫星的坐标从(X0S, Y0S, Z0S)转换为(XR1, YR1, ZR1)。
- §2 改正距离:看上面的图,接收机是固联在地球上与地球一起转动的(静态情况下),对于卫星而言,接收机在信号传播的过程中有一个旋转。但是从数字层面考量,接收机的坐标并没有发生变化(因为坐标系是地固系),换句话说,信号接收时刻和信号发射时刻,卫星认为接收机的坐标是一样的。通过数据计算得到的卫星至接收机的距离是图中的ρ,但是真实的卫星至接收机的距离是ρ+Δρ!所以,只需要改掉Δρ就行了。
下面只放结论,细节请移步这里。
改正坐标
[
\left[ \begin{array}{ccc}
\Delta X^{S} \
\Delta Y^{S} \
\Delta Z^{S}_1 \
\end{array} \right]\approx \left[ \begin{array}{ccc}
\alpha\cdot \color{red}Y^{S}_0 \
- \alpha \cdot \color{red}X^{S}_0 \
0 \
\end{array} \right] = \left[ \begin{array}{ccc}
\omega \tau\cdot Y^{S}_0 \ - \omega \tau \cdot X^{S}_0 \
0 \
\end{array} \right]
]
改正距离
[
\Delta \rho=\frac{\omega}{c}\left[ Y^S_0(X_0^S-X_{R0})- X^S_0(Y_0^S-Y_{R0}) \right]
]
Part.II 算例分析
Chap.I 基础数据
卫星坐标
G03 12712.882254 23247.798196 -2637.709427
接收机坐标
-2267752.0605993434, 5009151.1456511570, 3221301.4797024932
常量
OMEGA = 7292115.1467e-11 # rad/s
CLIGHT = 2.99792458e+8 # m/s
Chap.II 计算过程
卫星至接收机的距离
distance = np.linalg.norm(sat_crd - rec_crd)
# 卫星至接收机的距离: 24318627.829295974 m
信号传播时间
tau = distance / CLIGHT # [s]
# 信号传播时间: 0.08111821088339712 s
地球自转角度
ang = OMEGA * tau # [rad]
ang_deg = ang * 180 / G_PI # [deg]
# 地球旋转角度: 0.00033891790536376496 °
卫星坐标改正量
delta_X_sat = OMEGA * ang * sat_crd[1]
delta_Y_sat = -OMEGA * ang * sat_crd[0]
# 卫星坐标改正量 (delta_X_sat,delta_Y_sat): (0.010027836078424127, -0.005483646160923473) m
卫星至接收机的距离改正量
delta_rho = OMEGA / CLIGHT * (
sat_crd[1] * (sat_crd[0] - rec_crd[0]) -
sat_crd[0] * (sat_crd[1] - rec_crd[1])
)
# 卫星至接收机的距离改正量: 28.313234929582023 m
可见,由于地球自转,对于此颗星的距离量测有 28 m 误差之多!
Appendix
所用源码如下:
import numpy as np
def compute():
# Initail value
sat_crd = np.array([12712882.254, 23247798.196, -2637709.427])
rec_crd = np.array([-2267752.0605993434, 5009151.1456511570, 3221301.4797024932])
OMEGA = 7292115.1467e-11 # [rad/s]
CLIGHT = 2.99792458e+8 # [m/s]
G_PI = 3.14159265358979311599796346854419e0
# Calculate
distance = np.linalg.norm(sat_crd - rec_crd)
tau = distance / CLIGHT # [s]
ang = OMEGA * tau # [rad]
ang_deg = ang * 180 / G_PI # [deg]
delta_X_sat = OMEGA * ang * sat_crd[1]
delta_Y_sat = -OMEGA * ang * sat_crd[0]
delta_rho = OMEGA / CLIGHT * (
sat_crd[1] * (sat_crd[0] - rec_crd[0]) -
sat_crd[0] * (sat_crd[1] - rec_crd[1])
)
# Output
print("卫星至接收机的距离: ", distance, "m")
print("信号传播时间: ", tau, "s")
print("地球旋转角度: ", ang_deg, "°")
print("卫星坐标改正量 (delta_X_sat,delta_Y_sat): ", (delta_X_sat, delta_Y_sat), "m")
print("卫星至接收机的距离改正量: ", delta_rho, "m")
Reference
- Kaplan E D , Hegarty C .Understanding GPS/GNSS: Principles and Applications[M]. 2017.
- 地球自转改正(附图文)
- 【GNSS】地球自转改正
热门推荐
引领世界濒危鸟类朱鹮“重生”
多种酒混一起喝怎么办,把几种白酒混合在一起,还能喝吗
银行的储蓄国债是怎么购买的?
朱竹清:解析〈斗罗大陆〉中女性角色的自我救赎与价值重构
好玩的2D横版生存游戏有哪些?2D横版生存手游推荐2024
发胶产品成分分析化验配方检测还原及应用
传音的本地化实践:中国企业如何将“走出去”变成“融进去”
阔腿裤和直筒裤对比,哪个更显瘦显高?分别适合什么身材的人?
手机轻量化设计揭秘:告别厚重体验新篇章
珠三角年中观察:九市GDP超5.3万亿元,反弹与逆转同在
探寻"一站式"学生社区治理新路径
医惠保是什么保险
学习平板是否真的能提高学习效率?探讨其功能、使用场景与实际效果
老年人易发生哪些意外事故?老人意外伤害怎么处理
【示波器校准精要】:确保相位测量准确性的4步法
版权行业怎么赚钱
个人对赌协议样式:全面解析及法律实务指南
“糖油混合物”让人上瘾,但是真的要少吃!
甲亢甲减不会传染,但可能遗传
仙鹤草:从传统应用到现代研究的全面解析
30万级豪华增程电动车的对决:岚图FREE对比理想ONE
食堂卫生标准与食品安全管理研究
基于胶束木质素凝胶的全生物基护发素:可持续护发新突破
“怪力乱神”是什么意思?孔子为何不语怪力乱神?
大便溏稀的原因及解决方法是什么
八字全阴男命特点解析对照表揭秘
2025开年10部爆红国产剧!
如何通过模拟法庭提高法律意识
央企劳动合同怎么解决
侵权行为专属管辖:概念、理论与实践分析