基于暗通道先验的图像去雾算法解析与实现
创作时间:
作者:
@小白创作中心
基于暗通道先验的图像去雾算法解析与实现
引用
CSDN
1.
https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/145707812
图像去雾是计算机视觉领域的重要研究方向之一,广泛应用于摄影、遥感、自动驾驶等领域。基于暗通道先验的图像去雾算法是目前最常用的算法之一,其核心思想是利用无雾图像中局部区域至少存在一个颜色通道的像素值趋近于零的特性来恢复清晰图像。本文将详细介绍该算法的原理和实现步骤。
一、算法背景
何凯明团队于2009年提出的暗通道先验去雾算法《single image haze removal using dark channel prior》,通过统计发现:在无雾图像的局部区域中,至少存在一个颜色通道的像素值趋近于零。这一发现为图像去雾提供了重要的理论依据,其数学模型可表示为:
I(x) = J(x)t(x) + A(1 - t(x))
其中:
- I(x):观测到的有雾图像
- J(x):待恢复的无雾图像
- t(x):透射率
- A:全局大气光值
二、算法原理
1. 暗通道计算
通过取RGB三通道最小值并进行形态学腐蚀操作:
def dark_channel(img, size=15):
r, g, b = cv2.split(img)
min_img = cv2.min(r, cv2.min(g, b))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
return cv2.erode(min_img, kernel)
2. 大气光估计
选取图像中最亮像素的0.1%作为大气光值:
def get_atmo(img, percent=0.001):
mean_perpix = np.mean(img, axis=2).reshape(-1)
mean_topper = mean_perpix[:int(img.shape[0] * img.shape[1] * percent)]
return np.mean(mean_topper)
3. 透射率估计
t(x) = 1 - ω ⋅ dark_channel(I/A)
def get_trans(img, atom, w=0.95):
x = img / atom
return 1 - w * dark_channel(x, 7)
4. 引导滤波优化
使用灰度图作为引导图像进行透射率优化:
# 引导滤波
def guided_filter(p, i, r, e):
"""
:param p: input image
:param i: guidance image
:param r: radius
:param e: regularization
:return: filtering output q
"""
# 1
mean_I = cv2.boxFilter(i, cv2.CV_64F, (r, r))
mean_p = cv2.boxFilter(p, cv2.CV_64F, (r, r))
corr_I = cv2.boxFilter(i * i, cv2.CV_64F, (r, r))
corr_Ip = cv2.boxFilter(i * p, cv2.CV_64F, (r, r))
# 2
var_I = corr_I - mean_I * mean_I
cov_Ip = corr_Ip - mean_I * mean_p
# 3
a = cov_Ip / (var_I + e)
b = mean_p - a * mean_I
# 4
mean_a = cv2.boxFilter(a, cv2.CV_64F, (r, r))
mean_b = cv2.boxFilter(b, cv2.CV_64F, (r, r))
# 5
q = mean_a * i + mean_b
return q
三、完整实现代码
import cv2
import numpy as np
import os
# 计算雾化图像的暗通道
def dark_channel(img, size=15):
r, g, b = cv2.split(img)
min_img = cv2.min(r, cv2.min(g, b)) # 取最暗通道
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (size, size))
dc_img = cv2.erode(min_img, kernel)
return dc_img
# 估计全局大气光值
def get_atmo(img, percent=0.001):
mean_perpix = np.mean(img, axis=2).reshape(-1)
mean_topper = mean_perpix[:int(img.shape[0] * img.shape[1] * percent)]
return np.mean(mean_topper)
# 估算透射率图
def get_trans(img, atom, w=0.95):
x = img / atom
t = 1 - w * dark_channel(x, 15)
return t
# 引导滤波
def guided_filter(p, i, r, e):
"""
:param p: input image
:param i: guidance image
:param r: radius
:param e: regularization
:return: filtering output q
"""
# 1
mean_I = cv2.boxFilter(i, cv2.CV_64F, (r, r))
mean_p = cv2.boxFilter(p, cv2.CV_64F, (r, r))
corr_I = cv2.boxFilter(i * i, cv2.CV_64F, (r, r))
corr_Ip = cv2.boxFilter(i * p, cv2.CV_64F, (r, r))
# 2
var_I = corr_I - mean_I * mean_I
cov_Ip = corr_Ip - mean_I * mean_p
# 3
a = cov_Ip / (var_I + e)
b = mean_p - a * mean_I
# 4
mean_a = cv2.boxFilter(a, cv2.CV_64F, (r, r))
mean_b = cv2.boxFilter(b, cv2.CV_64F, (r, r))
# 5
q = mean_a * i + mean_b
return q
def dehaze(im):
img = im.astype('float64') / 255
img_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY).astype('float64') / 255
atom = get_atmo(img)
trans = get_trans(img, atom)
trans_guided = guided_filter(trans, img_gray, 20, 0.0001)
trans_guided = cv2.max(trans_guided, 0.25)
result = np.empty_like(img)
for i in range(3):
result[:, :, i] = (img[:, :, i] - atom) / trans_guided + atom
return result * 255
if __name__ == '__main__':
image_path= 'images/img.png'
im = cv2.imread(image_path)
img = im.astype('float64') / 255
img_gray = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY).astype('float64') / 255
atom = get_atmo(img)
trans = get_trans(img, atom)
trans_guided = guided_filter(trans, img_gray, 10, 0.0001)
trans_guided = cv2.max(trans_guided, 0.25)
result = np.empty_like(img)
for i in range(3):
result[:, :, i] = (img[:, :, i] - atom) / trans_guided + atom
cv2.imwrite('images/img.png', result * 255)
热门推荐
教你轻松训练兔子上厕所!4个简单方法与实用技巧打造干净、无异味的居家环境
全视角客户洞察,构建多渠道信息整合系统
造价师兼职聘任合同范本:法律要点与实务操作指南
无人机测绘的独特优势
蓝鲸:地球上最大的哺乳动物
胰腺有问题查血淀粉酶准吗
a醇使用全攻略:避光、频率、禁忌一文详解
西北师范大学全国排名和最强专业解析
如何抓住股票市场的主升浪行情?这种行情把握存在哪些技术要点?
壁灯多少瓦合适,家居照明的选择指南
最深情的"离婚协议书",为何出现在唐代?
为什么夏天适合喝点红茶?养胃的好处不小
员工推算同事工资要求加薪,遭辞退后进行索赔,法院:违反薪酬保密制度,系合法解除
螺蛳粉的功效作用,功能主治与营养药用价值是什么?
jBPM的介绍
有油的打火机如何安全邮寄?这种邮寄方式需要注意哪些问题?
养老费用解析:价格、持续时间与选择
电动自行车更智能更安全 新国标加速行业“以旧换新”
经常感冒、咳嗽、咳痰、低热,要警惕这种病
道德经的管理智慧探析
酪蛋白磷酸胜肽(CPP)的功效与作用机制
房产证办理的流程是怎样的?这种流程中需要注意哪些关键点?
中央型肺癌晚期的治疗费用详解
限制高消费人员能坐飞机吗
注册资本减少对企业经营的影响及应对策略
主炮齐射的战列舰有可能把自己轰散架吗?
水电验收到底要验收些什么?
医学课程设计与实践教学的融合
气血不足手心出汗怎么调理女性
诉说,也是一种治愈