基于生成对抗网络(GAN)人脸图像生成
创作时间:
作者:
@小白创作中心
基于生成对抗网络(GAN)人脸图像生成
引用
CSDN
1.
https://blog.csdn.net/tjl521314_21/article/details/143337209
生成对抗网络(GAN)是一种强大的深度学习模型,能够生成逼真的图像。本文将详细介绍如何使用GAN生成人脸图像,从环境准备到模型训练,再到结果可视化,手把手教你掌握这一前沿技术。
GAN 原理概述
生成对抗网络通过两个神经网络的对抗性结构来实现目标:
- 生成器(G):输入随机噪声,通过学习数据的分布模式生成类似真实图像的输出。
- 判别器(D):用来判断输入的图像是真实的还是生成器生成的。
训练过程中,生成器尝试欺骗判别器,生成逼真的图像,而判别器则不断优化,以区分真实图像与生成图像。这种对抗过程最终使生成器的生成能力逐渐逼近真实图像。
环境准备
首先导入相关库并设置随机种子以确保结果的可复现性。
import random
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import matplotlib.pyplot as plt
import numpy as np
超参数设置
在训练GAN之前,首先定义一些关键的超参数:
- batch_size:每个批次的样本数。
- image_size:图像的大小,用于调整输入数据的尺寸。
- nz:潜在向量大小,即生成器的输入维度。
- ngf和ndf:分别控制生成器和判别器中的特征图数量。
- num_epochs:训练的总轮数。
- lr:学习率。
batch_size = 128
image_size = 64
nz = 100
ngf = 64
ndf = 64
num_epochs = 50
lr = 0.0002
beta1 = 0.5
数据加载
通过torchvision.datasets.ImageFolder加载数据,并使用torch.utils.data.DataLoader进行批量处理。数据加载时,通过转换函数调整图像大小,并对其进行归一化处理。
dataroot = "data/GANdata"
dataset = dset.ImageFolder(root=dataroot,
transform=transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
网络结构定义
1. 生成器
生成器将随机噪声(潜在向量)通过一系列转置卷积层转换为图像。每层使用ReLU激活函数,最后一层用Tanh激活函数,将输出限制在[-1, 1]。
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
nn.ConvTranspose2d(ngf, 3, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, input):
return self.main(input)
2. 判别器
判别器为卷积网络,通过一系列卷积层提取图像特征。每层使用LeakyReLU激活函数,最终输出一个值(真实为1,生成为0)。
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(3, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, input):
return self.main(input)
训练过程
训练分为两个部分:判别器和生成器的更新。
1. 判别器的训练
判别器首先接收真实图像样本,计算输出与真实标签的误差。然后判别器接收生成器生成的假图像,再计算输出与假标签的误差。最终判别器的损失是两者的总和。
output = netD(real_cpu).view(-1)
errD_real = criterion(output, label)
errD_real.backward()
fake = netG(noise)
output = netD(fake.detach()).view(-1)
errD_fake = criterion(output, label.fill_(fake_label))
errD_fake.backward()
2. 生成器的训练
生成器的目标是欺骗判别器,因此其损失函数基于判别器将生成图像误识为真实的概率值。
output = netD(fake).view(-1)
errG = criterion(output, label.fill_(real_label))
errG.backward()
训练监控与可视化
训练时,我们记录生成器和判别器的损失,并生成一些样本图像来查看生成器的效果。
plt.figure(figsize=(10, 5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses, label="G")
plt.plot(D_losses, label="D")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.savefig('Generator and Discriminator Loss During Training.png')
结果可视化
训练结束后,我们将真实图像与生成图像对比,以检验生成器的效果。
plt.figure(figsize=(15, 15))
plt.subplot(1, 2, 1)
plt.axis("off")
plt.title("Real Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=5, normalize=True).cpu(), (1, 2, 0)))
plt.subplot(1, 2, 2)
plt.axis("off")
plt.title("Fake Images")
plt.imshow(np.transpose(img_list[-1], (1, 2, 0)))
plt.savefig('Fake Images.png')
plt.show()
总结
这周学习构建了一个深度卷积生成对抗网络(DCGAN),用于生成逼真的人脸图像,通过这周学习对对抗网路的构建有了更深的了解与运用。
热门推荐
高吸程自吸泵的材质如何选择
保健品行业违法案例曝光,虚假宣传重罚122万,合规生存是基础
深入解析信噪比:如何在信号与噪声之间找到平衡
天坛:中国悠久祭天文化的结晶 朴素鲜明地体现出世界伟大文明
单招考哪些 具体考试内容是什么
长期喝枸杞水有什么好处和坏处
纳吉布·马哈福兹:埃及文学的璀璨明珠
如何在资源有限的情况下,优化企业战略管理以实现目标?
人形机器人运动与操控:最新突破与挑战
如何查询黄金每日价格的来源?这些来源的权威性如何判断?
INFJ人格类型的工作特点、挑战与适配职业
Vue3中Vue Router路由器的三种工作模式详解
女性步态揭示性格:这10种走路姿势,你属于哪一种?
MATLAB串口接收数据+动态绘图
高端运动鞋中底必备材料,10+国内外尼龙弹性体厂商名单!
论语学而篇12:礼之用,和为贵
职场中拒绝帮忙的话术
神州租车违章处理难屡遭投诉,原本200元的违章罚款却被平台罚900元
如何确定项目绩效指标值的标准?
孩子能吃动物内脏吗
如何评估车辆换挡系统的性能?这种评估的依据是什么?
重症肌无力:临床诊疗困局与突破
深度学习系列77:tts技术原理
企业培训问卷调查表怎么写?实用指南
《国色芳华》豆瓣开分7.8,这评分真的合理吗?
上车牌的螺丝如何拆卸?这种拆卸方法对车牌安装有何影响?
【3D打印技巧】:手动编辑G-code,提升打印效率与质量
怎么训练曼彻斯特梗犬不攻击小型动物
地球大气层的五层结构
离职后,想回上家公司怎么办?