水究竟是怎么变成冰的?中国科学家证实经典临界冰核理论的百年预言
水究竟是怎么变成冰的?中国科学家证实经典临界冰核理论的百年预言
水究竟是怎么变成冰的?这个看似简单的问题,困扰了科学家们近百年。近日,中国科学院化学研究所、中国科学院大学及河北工业大学的研究团队在《自然》杂志发表重要研究成果,首次在实验中观测到临界冰核的存在,并给出了其尺寸和过冷温度的关系。这一发现不仅证实了经典成核理论的百年预言,更为控制冰晶形成提供了重要理论依据。
前言:水和冰
或许大部分对于“临界冰核”的概念较为陌生,其实通俗来说它就是一种水和冰相互转换的过程,即水凝结成冰,或冰融化成水。
在常人看来,这是一种再普通不过的现象,冰融化是因为外界温度达到并超过冰的熔点,冰自然就融化了,理解的更深一点无非就是热传递,初中的时候大家都学过这一概念。两个物体间存在温度差,就会发生热传递,内能由高温物体传到低温物体,直到两个物体温度相同为止.所以冰融化是因为有温度比冰高的物体和冰之间发生热传递,使冰的温度达到熔点后继续吸热而熔化。而水凝结成冰则与其前者相反,当外界温度非常低,甚至低于0度时,水和外界温度存在一定的温度差,于是外界温度就会强制释放水所含的热量,使水分子间的距离变小,渐渐地它就凝结成冰了。
但是科学家们研究是更加微观的结构,即水凝结冰时在微观层面下发生的肉眼无法观测到的现象,科学家称它为“成核”!所谓成核就是指新相在旧相中开始形成时,并非在亚稳系统(濒临稳定状态的结构)的全部体积内同时发生,而是在旧相中的某些位置产生小范围的新相,通过围观显微镜我们实际上在新相和旧相之间有比较清晰的分界线。
相
什么是“相”呢?所谓“相”是指物质存在的状态,在同一相中,化学组成与物理性质是均匀的。以纯水为例,它以水的液态、水蒸气的气态、及冰的固态三种状态存在,分别称为液相、气相和固相。同时,当温度、压力等环境条件改变时,物质可能从原来存在的相转变成另一相,产生所谓的“相变化”,而相变化中所产生的原理,则是“成核理论”的研究目标!
成核
我们要如何简单地理解“成核”呢?举例来说,水凝结成冰时,水的全部液相并不会瞬间被固相所代替,它必然是从液相的某一个部分逐渐开始变成固相,最终当外界环境温度保持能够保持0度或者持续降低,水的液相就会逐渐被固相所代替,而变成固相的那个时刻的新相即为成核。之所以有成核是物之必然,就像你打破一个玻璃,必然是击中玻璃的那个点开始裂开,最后开始延伸到全部,而不是瞬间全部裂开。
临界冰核
而临界冰核就是科学家所要研究水冰结成冰成核的那个状态,数百年前,科学家提出了著名的成核理论,但是成核理论所要求的观测尺度非常狭小,几乎处于纳米级别。当时美国物理学家吉布斯基于简单假设,提出了成核中的“临界冰核”这一概念。然而,“临界冰核”的真实面目却始终没人见过。即便如此,科技的发展已经足以让科学家证明成核理论,但是对于成核理论中的关键----临界冰核依然无从下手。但是,这一次,我国科学家揭开了这一长期以来困扰着科学界的谜题!
这是一次史无前例的发现,我们知道要在纳米级别上测量一个物质状态是非常困难,更何况要捕捉物质变化的某个瞬间。而我国中科院化学所王健君、中国科学院大学周昕团队创新性地使用了纳米级的尺子来测量临界冰核的尺寸,最终他们如愿以偿成功地发现了临界冰核的大小!
实验过程
据了解,此次实验的过程大略是这样的,我国科学家采用了系列尺寸固定的纳米级尺子,来度量‘临界冰核’,接着在实验中持续降低温度以使冰核达到临界所需尺寸,当这个尺寸恰好与纳米颗粒尺寸相当时,这时候关键来了,因为此时的临界冰核就容易形成,从而导致区域固相代替液相,发生成核过程。最后研究发现‘冰核’临界尺寸的直径约为10纳米左右,这是水分子聚集形成冰晶结构,并快速形成大冰晶所需的最小临界尺寸。此外,研究人员还通过理论计算分析,发现冰成核自由能垒的突变来源于纳米片边界效应导致的临界冰核形状的变化。
毫无疑问,这一实验的难度可想而知,任何细微的操作以及缜密的思维都必不可少,我国科学家朝这个方向迈出了重要的一步,解开了这一尘封科学界数百年的谜题,为人类的可持续发展提供了宝贵的线索,该项课题研究加深了对水结冰这一重要相变现象的微观机制的理解,也为实现人为控冰应用提供了重要理论指引,例如调控冰晶形成和生长、提高细胞组织等冷冻保存的复苏效率、提高食品制作冷藏的保鲜度等,将在化学工业、低温生物学、材料科学等领域发挥至关重要的作用。
12月19日凌晨,新一期《自然》杂志发表了中国科学院化学研究所、中国科学院大学及河北工业大学研究人员的这一重大成果,祝贺他们!
从“简单”问题出发
自然界的物质在特定条件下会自发从一个状态变成另一状态。例如,低温下的水会结成冰,这被科学家们称为“相变”。
吉布斯等人提出相变的“经典成核理论”,预言相变需要经过“成核”过程。近年来,这一经典理论受到新实验证据的质疑。
“比如,过冷水中可以偶然形成不同大小的冰核,当形成的核超过一个临界尺寸时,临界核形成,相变才开始自发发生。”该论文通讯作者、中科院化学研究所研究员王健君解释。要证明吉布斯的预言,则必须找到“临界冰核”。
2010年,王健君锁定自己的研究领域。“水是怎么变成冰的,这个听起来很简单的问题,其实蕴含了深奥的科学道理。”他告诉《中国科学报》。
事实上,了解水结冰过程不仅满足了人们的好奇心,更是有用的知识——作为一个自然界的普遍现象,它不仅潜移默化地影响着地球上的气候、地质及生命,还在化学工业、低温生物学、材料科学等领域发挥着至关重要的作用。
“还和冰淇淋的口感有关系,实验发现,冰淇淋口味要好,冰晶尺寸大概维持在头发丝的一半,大约40微米左右。”王健君说。
来自自然界的启示
“尽管冰晶普遍存在,但是在分子层面,人类依旧无法真实了解水分子以何种形态相互结合形成‘冰核’进而生长成大冰晶的过程。”德国马克斯·普朗克高分子研究所(美因茨)所长Mischa Bonn指出,“其中的核心问题在于,水分子如何形成‘冰核’的微观过程,即冰晶成核过程。”
长期致力于水结冰过程研究的王健君发现,想通过直接观察“逮住”临界冰核并不是那么容易。
“这个过程发生在一个随机的瞬间,尺寸又非常小,现有的仪器难以同时观察到时间、空间尺度这么小的一个随机事件。”王健君表示,“那么只能考虑间接的方法。”
生存在中国北方寒冷地区的一种昆虫冬尺蠖给了他们启示。
研究人员发现,能在低温下生存的冬尺蠖携带一种“抗冻蛋白”,能够抑制体内冰晶生长。而另一种作用相反的蛋白“冰晶核蛋白”却可以高效地促进冰核形成,目前已经被用来当作人工造雪剂。
研究人员发现,它们结构相似,唯一的不同就是尺寸。
“抗冻蛋白尺寸约在1——2纳米左右,冰晶核蛋白在几十个纳米级。”王健君说。他们由此确定,“尺寸”是决定冰核能不能形成的重要因素。
小颗粒发挥大作用
在定性认识的基础上,定量关系的测定成为接下来的目标——多大尺寸、在什么温度下影响成核过程,成为研究团队探索的科学问题。
他们设计制备了系列尺寸和化学性质窄分布的氧化石墨烯纳米材料,研究了不同尺寸氧化石墨烯对成核温度的影响。
观察中,研究人员发现,含有8纳米尺寸氧化石墨烯的水滴,在摄氏零下27.6度时结冰;含有11纳米氧化石墨烯的水滴,在摄氏零下17.6度就开始结冰。最终,他们从一系列的数据中获得定量关系,当成核温度和纳米氧化石墨烯尺寸的乘积等于200时,水结冰。
也就是说,纳米颗粒尺寸在促进冰成核能力方面的尺寸阈值现象是普遍的,与过冷温度成反比关系,而几乎不依赖于纳米颗粒的种类、表面化学性质等特征。
此外,研究人员还通过理论计算分析,发现冰成核自由能垒的突变来源于纳米片边界效应导致的临界冰核形状的变化。
“实验可以理解为用尺寸确定的纳米颗粒作为尺子,去度量常规办法不能捕捉到的微小瞬时的临界冰核:持续降低温度可使冰核达到临界尺寸,当这个尺寸恰好与纳米颗粒的尺寸相当时,临界冰核容易形成,并导致宏观冰晶快速形成可被光学显微镜探测到。”论文另一位通讯作者、中国科学院大学教授周昕解释道。
作为该领域的专家,Mischa Bonn对这项成果给予了高度评价:“研究团队通过对实验材料表面进行纳米化的处理,发现‘冰核’临界尺寸的直径约为10纳米左右,这是水分子聚集形成冰晶结构,并快速形成大冰晶所需的最小临界尺寸。”
这一成果大大加深了对水结冰这一重要相变现象的微观机制的理解,也在人为控冰应用方面提供了重要理论指引。
相关论文:
https://www.nature.com/articles/s41586-019-1827-6
《中国科学报》 (2019-12-19 第1版 要闻 原题《百年预言终获实锤,中国学者证实“临界冰核”真实存在》)