前向差分、后向差分、中心差分精度分析及Matlab仿真
创作时间:
作者:
@小白创作中心
前向差分、后向差分、中心差分精度分析及Matlab仿真
引用
CSDN
1.
https://blog.csdn.net/qq_44588244/article/details/128675455
一、前向差分
前向差分公式:(1)
泰勒展开为:(2)
由泰勒展开可以推出 f '(x) : (3)
由(3)可以知道右边第一项是前向差分,而其他项的和是函数f '(x)与前向差分的误差,用o(x)表示,得出:(4)
因为误差项为o(x),o(x)主要项为Δx/2。而Δx为一阶,所以前向差分为一阶精度。
同理可以推出后向差分
二、后向差分
后向差分公式:(1)
泰勒展开为:(2)
由泰勒展开可以推出 f '(x) : (3)
由(3)可以知道右边第一项是后向差分,而其他项的和是函数f '(x)与后向差分的误差,用o(x)表示,得出:(4)
因为误差项为o(x),o(x)主要项为Δx/2。而Δx为一阶,所以后向差分为一阶精度。
三、中心差分
中心差分公式:(1)
泰勒展开为:(2)
由泰勒展开可以推出 f '(x) : (3)
由(3)可以知道右边第一项是中心差分,而其他项的和是函数f '(x)与中心差分的误差,其中主要项就是 (Δx^2)/6,由于 Δx^2是二阶的,因此中心差分的精度是二阶精度。
总结:
1、对于一阶差分如果Δx缩小到原来的1/2,那么误差项也会缩小到原来的1/2.
2、对于二阶差分如果Δx缩小到原来的1/2,那么误差项会缩小到原来的1/4.
3、因此二阶精度比一阶精度高。
四、Matlab仿真
%% 探究前向差分、后向差分、中心差分的精确度
% 函数f(x)=sin(x)*exp(-0.3x)
% 原函数图像
hold on
a = 100;
x = linspace(0,5*pi,100);
fx = sin(x).*exp(-0.3*x);
plot(x,fx);
% fx的一阶倒数画图
% f'(x)=cos(x)*exp(-0.3x)-0.3sin(x)*exp(-0.3x)
% f1x = cos(x).*exp(-0.3*x)-0.3*sin(x).*exp(-0.3*x);
% plot(x,f1x);
hold off
%% 差分
hold on
f1x = cos(x).*exp(-0.3*x)-0.3*sin(x).*exp(-0.3*x);
plot(x,f1x);
dx = 5*pi/100;
fx_0dx = sin(x+dx).*exp(-0.3*(x+dx));
fx_1dx = sin(x-dx).*exp(-0.3*(x-dx));
% 前向差分:f'(x)=[f(x+dx)-f(x)]/dx
f1x_f = (fx_0dx - fx)/dx;
plot(x,f1x_f,'--');
% 后向差分:f'(x)=[f(x)-f(x-dx)]/dx
f1x_b = (fx - fx_1dx)/dx;
plot(x,f1x_b,'-.');
% 中心差分:f'(x)=[f(x+dx)-f(x-dx)]/2dx
f1x_c = (fx_0dx - fx_1dx)/(2*dx);
plot(x,f1x_c,'o:','MarkerSize',3);
title('f(x)的导数与有限差分近似,dx=5*\pi/100','FontSize',20)
legend("f'(x)原始","前向差分","后向差分","中心差分",'FontSize',12)
hold off
%% 差分误差分析,dx=5*pi/100
hold on
% 前向误差
error_f = f1x - f1x_f;
plot(x,error_f,'--');
% 后向误差
error_b = f1x - f1x_b;
plot(x,error_b,'-.');
% 中心误差
error_c = f1x - f1x_c;
plot(x,error_c,'o:','MarkerSize',3);
title('差分误差分析,dx=5*\pi/100','FontSize',20)
legend("前向误差","后向误差","中心误差",'FontSize',12)
hold off
%% 差分误差分析,dx=5*pi/200
a = 200;
x = linspace(0,5*pi,a);
fx = sin(x).*exp(-0.3*x);
f1x = cos(x).*exp(-0.3*x)-0.3*sin(x).*exp(-0.3*x);
dx = 5*pi/a;
fx_0dx = sin(x+dx).*exp(-0.3*(x+dx));
fx_1dx = sin(x-dx).*exp(-0.3*(x-dx));
f1x_f = (fx_0dx - fx)/dx;
f1x_b = (fx - fx_1dx)/dx;
f1x_c = (fx_0dx - fx_1dx)/(2*dx);
hold on
% 前向误差
error_f = f1x - f1x_f;
plot(x,error_f,'--');
% 后向误差
error_b = f1x - f1x_b;
plot(x,error_b,'-.');
% 中心误差
error_c = f1x - f1x_c;
plot(x,error_c,'o:','MarkerSize',3);
title('差分误差分析dx=5*\pi/200','FontSize',20)
legend("前向误差","后向误差","中心误差",'FontSize',12)
hold off
运行结果:
第一部分:原函数
第二部分:
细节图:
观察细节图:
由细节图可以观察出中心差分比前向后向差分都准确
第三部分:误差分析图
由这个误差分析图可以看出:中心差分(橙色的圆圈)的误差最小。
第四部分:修改采样频率,理论分析得知,采样频率越高,精度越高。
第三部分和第四部分对比,dx缩小1/2,误差缩小!
热门推荐
历史上的著名奸臣:权力与贪婪的阴暗面
新能源汽车技术实习:培养实践与创新能力,助力职业发展
年轻人钟爱的“临期食品”,到底有多香?
吕后加害戚夫人,实则两个目的,没想到最终却害惨了自己的儿子
全球雪道等级划分详解:从北美到日本的滑雪场评级标准
J Rheumatol:成人斯蒂尔病的药物治疗有效性和安全性荟萃分析
未解之谜:人类死亡后意识是否能永恒存在
孩子改姓需要的条件
当哪吒“邂逅”非遗青花瓷,老外被中式美学实力圈粉了!
相比于乙肝大三阳,为什么乙肝小三阳更容易进展为肝硬化、肝癌?
常量元素和微量元素是什么
谁敢与中国海军对阵?当32艘055巡洋舰摆开阵势 西太的天平将失衡
男人吃人参需要注意的地方
2024年广州中医药大学成考高升专中药学专业报名流程最新公布
2024体育赛事轮番上演,视频会员套娃式收费陷阱多
脚底板长鸡眼怎么去除
商誉风险的评估方法有哪些?如何有效防范商誉风险?
养老保险一次性补缴条件
皮肤出现红色一片一片的痒
灵活就业缴够15年养老保险以后,还要继续缴费吗?能多领多少钱?
湖北京山:文旅融合“擦亮”美丽乡村
“栓” 不住的健康:世界血栓日,精准防治VTE
MATLAB滤波器设计FDATool工具箱使用说明
蘸料的重要性:芝麻酱的调制技巧
JS评分标准详解:从代码可读性到执行效率
中国古代十大奸臣:历史长河中的阴霾
绿萝冬季养护指南:如何让绿萝安全过冬?
种植牙品牌的区别和优缺点解析!ITI/ICX/登腾均有介绍~
双侧高效驱动移动式踝关节外骨骼的设计与评估
冷暖色在PPT设计中的应用指南