前向差分、后向差分、中心差分精度分析及Matlab仿真
创作时间:
作者:
@小白创作中心
前向差分、后向差分、中心差分精度分析及Matlab仿真
引用
CSDN
1.
https://blog.csdn.net/qq_44588244/article/details/128675455
一、前向差分
前向差分公式:(1)
泰勒展开为:(2)
由泰勒展开可以推出 f '(x) : (3)
由(3)可以知道右边第一项是前向差分,而其他项的和是函数f '(x)与前向差分的误差,用o(x)表示,得出:(4)
因为误差项为o(x),o(x)主要项为Δx/2。而Δx为一阶,所以前向差分为一阶精度。
同理可以推出后向差分
二、后向差分
后向差分公式:(1)
泰勒展开为:(2)
由泰勒展开可以推出 f '(x) : (3)
由(3)可以知道右边第一项是后向差分,而其他项的和是函数f '(x)与后向差分的误差,用o(x)表示,得出:(4)
因为误差项为o(x),o(x)主要项为Δx/2。而Δx为一阶,所以后向差分为一阶精度。
三、中心差分
中心差分公式:(1)
泰勒展开为:(2)
由泰勒展开可以推出 f '(x) : (3)
由(3)可以知道右边第一项是中心差分,而其他项的和是函数f '(x)与中心差分的误差,其中主要项就是 (Δx^2)/6,由于 Δx^2是二阶的,因此中心差分的精度是二阶精度。
总结:
1、对于一阶差分如果Δx缩小到原来的1/2,那么误差项也会缩小到原来的1/2.
2、对于二阶差分如果Δx缩小到原来的1/2,那么误差项会缩小到原来的1/4.
3、因此二阶精度比一阶精度高。
四、Matlab仿真
%% 探究前向差分、后向差分、中心差分的精确度
% 函数f(x)=sin(x)*exp(-0.3x)
% 原函数图像
hold on
a = 100;
x = linspace(0,5*pi,100);
fx = sin(x).*exp(-0.3*x);
plot(x,fx);
% fx的一阶倒数画图
% f'(x)=cos(x)*exp(-0.3x)-0.3sin(x)*exp(-0.3x)
% f1x = cos(x).*exp(-0.3*x)-0.3*sin(x).*exp(-0.3*x);
% plot(x,f1x);
hold off
%% 差分
hold on
f1x = cos(x).*exp(-0.3*x)-0.3*sin(x).*exp(-0.3*x);
plot(x,f1x);
dx = 5*pi/100;
fx_0dx = sin(x+dx).*exp(-0.3*(x+dx));
fx_1dx = sin(x-dx).*exp(-0.3*(x-dx));
% 前向差分:f'(x)=[f(x+dx)-f(x)]/dx
f1x_f = (fx_0dx - fx)/dx;
plot(x,f1x_f,'--');
% 后向差分:f'(x)=[f(x)-f(x-dx)]/dx
f1x_b = (fx - fx_1dx)/dx;
plot(x,f1x_b,'-.');
% 中心差分:f'(x)=[f(x+dx)-f(x-dx)]/2dx
f1x_c = (fx_0dx - fx_1dx)/(2*dx);
plot(x,f1x_c,'o:','MarkerSize',3);
title('f(x)的导数与有限差分近似,dx=5*\pi/100','FontSize',20)
legend("f'(x)原始","前向差分","后向差分","中心差分",'FontSize',12)
hold off
%% 差分误差分析,dx=5*pi/100
hold on
% 前向误差
error_f = f1x - f1x_f;
plot(x,error_f,'--');
% 后向误差
error_b = f1x - f1x_b;
plot(x,error_b,'-.');
% 中心误差
error_c = f1x - f1x_c;
plot(x,error_c,'o:','MarkerSize',3);
title('差分误差分析,dx=5*\pi/100','FontSize',20)
legend("前向误差","后向误差","中心误差",'FontSize',12)
hold off
%% 差分误差分析,dx=5*pi/200
a = 200;
x = linspace(0,5*pi,a);
fx = sin(x).*exp(-0.3*x);
f1x = cos(x).*exp(-0.3*x)-0.3*sin(x).*exp(-0.3*x);
dx = 5*pi/a;
fx_0dx = sin(x+dx).*exp(-0.3*(x+dx));
fx_1dx = sin(x-dx).*exp(-0.3*(x-dx));
f1x_f = (fx_0dx - fx)/dx;
f1x_b = (fx - fx_1dx)/dx;
f1x_c = (fx_0dx - fx_1dx)/(2*dx);
hold on
% 前向误差
error_f = f1x - f1x_f;
plot(x,error_f,'--');
% 后向误差
error_b = f1x - f1x_b;
plot(x,error_b,'-.');
% 中心误差
error_c = f1x - f1x_c;
plot(x,error_c,'o:','MarkerSize',3);
title('差分误差分析dx=5*\pi/200','FontSize',20)
legend("前向误差","后向误差","中心误差",'FontSize',12)
hold off
运行结果:
第一部分:原函数
第二部分:
细节图:
观察细节图:
由细节图可以观察出中心差分比前向后向差分都准确
第三部分:误差分析图
由这个误差分析图可以看出:中心差分(橙色的圆圈)的误差最小。
第四部分:修改采样频率,理论分析得知,采样频率越高,精度越高。
第三部分和第四部分对比,dx缩小1/2,误差缩小!
热门推荐
冰拿铁和热拿铁哪个好喝?选择指南
职工医保、居民医保应该怎么选?
铜钱草怎么种植方法
国家劳动部投诉渠道有哪些
解析职务犯罪心理:基于法律责任与心理机制的综合分析
探秘阳江:隐秘美食与绝美风光
香港全资子公司审计:深入解析关联交易与税务合规的挑战与策略
在线签署网签合同的步骤与技巧
黑龙江中医药大学选科要求对照表 各专业需要选考什么科目
注塑机为什么要用模温机?「欧诺智能」模温机必不可少
语言学习的四大驱动力
武汉交通事故诉讼费用缴纳标准
易经智慧中的命运与轮回
邢台眼科医院就诊须知及注意事项
安全管理制度清单的法律构建与实践应用
股动脉损伤的临床表现有哪些症状
LOL盲僧的反打技巧有哪些?
大学生,你还读诗、写诗吗?|从相思湖诗群二十年看广西高校中文创意写作学科建设成效
向“新”之路:广州科技让“老树”开“新花”
繁花满城赏春正当时!郑州春天赏花汇总来啦!
房产税征收标准和政策2025最新
公司横向人格否认制度的法律分析与实践应用
星露谷物语上古种子种植方法
从沈阳到厦门的出行时间及方式详解
期货与期权的定义是什么?它们在实际应用中有哪些不同?
突破性进展:黄连素抗癌潜力获证实,新型递送系统破解应用难题
产品需求背景如何写:从目标用户到市场机会的全面指南
大腿根疼能吃止痛药吗?专业医生这样建议
蒸汽朋克和赛博朋克有区别吗?各自的风格是什么?
杭州买房税费最新政策(有哪些+怎么算+买方要交吗)