层次聚类——以凝聚型层次聚类为例讲解(易懂版)
创作时间:
作者:
@小白创作中心
层次聚类——以凝聚型层次聚类为例讲解(易懂版)
引用
CSDN
1.
https://blog.csdn.net/weixin_74268817/article/details/143821824
层次聚类是一种将数据集逐步划分为层次结构的方法,是一种无监督学习方法最终形成一颗树状图(dendrogram),可以直观地表示不同数据点之间的聚类关系。它是一种无监督学习方法。
层次聚类的两种方法
- 凝聚型(自底向上):这是最常见的方法,从每个数据点开始,将它们作为单独的簇。然后,逐步合并最相似的簇,直到所有数据点都被合并成一个簇,或者达到设定的停止条件。
- 分裂型(自顶向下):与凝聚型相反,分裂型聚类从整个数据集开始,然后将其分割成更小的簇,逐步细分,直到每个簇只包含一个数据点或达到某个停止条件。
这里,我们详细讲解凝聚型层次聚类的原理。
凝聚型层次聚类
距离度量方法:
- 欧氏距离:是最常见的距离度量,用于度量两点之间的直线距离,常见于低维数据,尤其适用于球形簇结构。
- 曼哈顿距离:是另一个常用的距离度量,适合于矩形格局的数据(如网格结构的数据),计算的是两点在坐标轴上的绝对距离之和。
- 其他距离度量:如余弦相似度、马氏距离等,也可以在不同的应用场景中替代欧氏距离。
后文均以欧氏距离讲解。
聚合准则(合并策略):
- 单链聚类: 在此方法中,两个簇之间的距离是簇中任意两个点之间的最小距离:
这种方法容易受到离群点的影响。 - 全链聚类: 在此方法中,两个簇之间的距离是簇中任意两个点之间的最大距离:
这种方法产生的簇较为紧凑,较不容易出现离群点。 - 均值链接: 计算簇之间所有点对的平均距离:
这种方法是单链和全链的折中。 - Ward法: 该方法基于簇内的方差来判断合并的方式,目标是最小化每次合并所增加的方差。两个簇合并后,新的簇的总方差是最小的。对于两个簇 A 和 B,计算合并后的簇的总方差,其公式为:
主要步骤:
- 计算所有数据点之间的欧式距离。
- 将每个数据点作为一个独立的簇。
- 计算簇间的距离(相似度),合并距离最近(最相似)的两个簇。(贪心算法)
- 重复步骤3,直到所有数据点都合并成一个簇或达到终止条件。
- 绘制树状图,观察不同簇合并的层次结构。
树状图可视化:
# 导包
import numpy as np
from scipy.cluster.hierarchy import linkage, dendrogram, fcluster
import matplotlib.pyplot as plt
# 创建示例数据
np.random.seed(42)
data = np.random.rand(10, 2) # 10个样本,2个特征
# Ward聚类准则为例,进行层次聚类
linkage_matrix = linkage(data, method='ward')
# 3. 绘制树状图(Dendrogram)
plt.figure(figsize=(8, 4))
dendrogram(linkage_matrix)
plt.title('Dendrogram')
plt.xlabel('Sample Index')
plt.ylabel('Distance')
plt.show()
树状图怎么看?
这样看,第2个和第7个样本点,他们距离最近,合并为同一簇,接着到3和5,合并为同一簇,...。整一个树状图为一个由所以样本点构成的簇,我们根据需要进行划分为k个簇。比如我们在distance=1.1这里截断树状图,那么就划分为035,2789617两个簇;如果在distance=0.7这里截断树状图,就可以划分为035,2789,614三个簇。我们一般选择距离差较大的来划分,比如1.2和0.4之间相差很大,我们需要从这里截断。截断处理一般通过设置一个阈值实现,比如0.5,两个簇之间的距离超过0.5这个阈值就截断,即不再进行合并簇。
簇的数量的选择
情况1(固定需求):如果我们任务需求已经确定要分为3个类别,就直接将簇的数量设置为3个簇,不需要可视化树状图,默认按最佳划分直接得出分类结果。
情况2(不知道分几类):我们不知道要分为几个类别时,就需要根据树状图分析,选择合适的阈值进行划分。
我们看代码实现:
# 或根据指定的簇数量分割(情况1)
num_clusters = 2
labels_by_cluster = fcluster(linkage_matrix, t=num_clusters, criterion='maxclust')
# 根据距离阈值分割(情况2)
threshold = 0.5
labels = fcluster(linkage_matrix, t=threshold, criterion='distance')
# 输出聚类结果
print("基于簇数量的聚类结果:", labels_by_cluster)
print("基于距离阈值的聚类结果:", labels)
# 输出如下:
# 基于簇数量的聚类结果: [1 2 2 1 2 1 2 2 2 2]
# 基于距离阈值的聚类结果: [1 3 2 1 3 1 4 2 2 2]
应用场景
- 生物信息学: 分析基因表达模式或序列相似性。
- 市场细分: 根据客户特征划分客户群。
- 文档分类: 根据文档相似性组织文档层次。
- 图像分割: 通过像素特征对图像进行分块。
- 异常检测: 寻找与其他簇相异的数据点。
层次聚类优缺点:
优点:
- 直观性强:通过树状图 (dendrogram) 可以清晰地展示数据点的聚类过程,帮助分析数据的层次结构。
- 可以不用预设簇数:不像 K-means 聚类需要预先指定簇的数量,层次聚类可以通过不同的截断方式调整簇数量。
- 适用于非球形分布:层次聚类可以处理形状复杂的簇(如长条形或非线性分布),相比 K-means 更加灵活。
- 适用小数据集:层次聚类在处理小数据集时非常有效,能够生成详细的聚类关系。
- 支持多种距离度量方法
缺点:
- 计算复杂度高:层次聚类的时间复杂度通常为
,在大规模数据集上计算量较大。存储复杂度也较高,尤其是在需要保存距离矩阵的情况下。 - 对噪声和离群点敏感:噪声数据和异常值可能会显著影响聚类结果,导致某些簇的质量下降。
- 不可逆性:层次聚类是贪心算法,聚类过程中做出的错误决定无法回溯或修正。
- 难以扩展到大数据集:随着数据量增大,计算距离矩阵和构建树状图的代价过高,导致性能瓶颈。
- 缺乏优化目标:不像 K-means 或 GMM 聚类有明确的优化目标(如最小化簇内误差平方和),层次聚类的结果可能难以量化和比较。
热门推荐
广西的绿色宝藏:高收益中药材种植指南
微信马币怎么换人民币
急性胰腺炎:认识、治疗及预防!
民事诉讼如何起诉对方?全流程指南
如何挑选开关并进行正确安装?这类挑选和安装有哪些注意事项?
胸肌肌肉跳动是什么原因
男人的婚姻经营之道处处让着妻子你就赢了?如何在婚姻中实践这一智慧?
爱她就要让她知道,表达感情的重要性
什么时间测血糖?早晨中午还是晚上?
A型、B型、AB型、O型,哪种血型的人抵抗力好?医生说出答案
去除粘胶的最快方法,胶水去除方法和粘胶去除剂购买指南
体测仪测800米跑步技巧有哪些?如何提高跑步成绩?
迷你加湿器的内部结构是怎样的 迷你加湿器原理是什么
足部疼痛?不只因肌肉和筋膜,还有易被忽视的它
吊客是否指父母已去世的人 吊客的真正含义是什么
特发性矮小(ISS)儿童家长必读:生长激素治疗的安全性与有效性
黄巾浪潮:百万流民如何冲垮汉帝国的秩序防线?
买菜板,经过评比,这4种材质最实用,认准3点买到优质好砧板
如何写出精彩的论点?—— 五个要点
1g等于多少斤?古代重量单位如何换算
如何利用奖赏机制学习
2025年食品标签新规解读:日期、致敏原、营养标签等5大关键要点
关键时刻化险为夷 手机地震预警设置方法
新学期北京中小学鼓励学生花式动起来
蓝鲸为什么能长那么大?自己的伙食自己养,越级抢占底层资源
Omega-3补充剂对干眼症治疗效果的临床研究
健胃消食片吃多了怎么办?医生给出专业解答
一套高效的颞颌关节紊乱综合征治疗方法
125个科学问题(95)性格的形成
小保养、大保养傻傻分不清?