Matlab实现经典功率谱估计的几种方法
创作时间:
作者:
@小白创作中心
Matlab实现经典功率谱估计的几种方法
引用
1
来源
1.
https://cloud.tencent.com/developer/article/2473103
功率谱估计是信号处理中的基础且重要的技术,广泛应用于通信、雷达、声学等领域。本文将介绍使用Matlab实现经典功率谱估计的几种方法,包括直接法、间接法和改进的直接法(Bartlett法和Welch法)。通过详细的Matlab代码示例,展示如何在实际应用中实现这些方法,并附有运行结果的图表。
fft做出来是频谱,psd做出来是功率谱;功率谱丢失了频谱的相位信息; 频谱不同的信号其功率谱是可能相同的;功率谱是幅度取模后平方,结果是个实数 matlab中自功率谱密度直接用psd函数就可以求,按照matlab的说法,psd 能实现Welch法估计,即相当于用改进的平均周期图法来求取随机信号的功率谱密度估计,psd求出的结果会更光滑。
1、直接法:
直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。
clear;
Fs=1000; %采样频率
n=0:1/Fs:1;
%产生含有噪声的序列
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
window=boxcar(length(xn)); %矩形窗
nfft=1024;
[Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法
plot(f,10*log10(Pxx));
运行结果:
2、间接法:
由维纳辛钦定理可知,间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。
clear;
Fs=1000; %采样频率
n=0:1/Fs:1;
%产生含有噪声的序列
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
nfft=1024;
cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数
CXk=fft(cxn,nfft);
Pxx=abs(CXk);
index=0:round(nfft/2-1);
k=index*Fs/nfft;
plot_Pxx=10*log10(Pxx(index+1));
plot(k,plot_Pxx);
运行结果:
3、改进的直接法:
对于直接法的功率谱估计,当数据长度N太大时,谱 曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。
3.1、Bartlett法
Bartlett平均周期图的方法是将N点的有限长序列x(n)分段求周期图再平 均。
clear;
Fs=1000;
n=0:1/Fs:1;
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
nfft=1024;
window=boxcar(length(n)); %矩形窗
noverlap=0; %数据无重叠
p=0.9; %置信概率
[Pxx,Pxxc]=psd(xn,nfft,Fs,window,noverlap,p);
index=0:round(nfft/2-1);
k=index*Fs/nfft;
plot_Pxx=10*log10(Pxx(index+1));
plot_Pxxc=10*log10(Pxxc(index+1));
figure(1)
plot(k,plot_Pxx);
pause;
figure(2)
plot(k,[plot_Pxx plot_Pxx-plot_Pxxc plot_Pxx+plot_Pxxc]);
3.2、Welch法
Welch法对Bartlett法进行了两方面的修正,一是选择适当的窗函数 w(n),并再周期图计算前直接加进去,加窗的优点是无论什么样的窗函数 均可使谱估计非负。二是在分段时,可使各段之间有重叠,这样会使方差减小。
clear;
Fs=1000;
n=0:1/Fs:1;
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
nfft=1024;
window=boxcar(100); %矩形窗
window1=hamming(100); %海明窗
window2=blackman(100); %blackman窗
noverlap=20; %数据无重叠
range='half'; %频率间隔为[0 Fs/2],只计算一半的频率
[Pxx,f]=pwelch(xn,window,noverlap,nfft,Fs,range);
[Pxx1,f]=pwelch(xn,window1,noverlap,nfft,Fs,range);
[Pxx2,f]=pwelch(xn,window2,noverlap,nfft,Fs,range);
plot_Pxx=10*log10(Pxx);
plot_Pxx1=10*log10(Pxx1);
plot_Pxx2=10*log10(Pxx2);
figure(1)
plot(f,plot_Pxx);
pause;
figure(2)
plot(f,plot_Pxx1);
pause;
figure(3)
plot(f,plot_Pxx2);
运行结果:
热门推荐
你喜欢黄昏吗?解释的3个阶段
人类历史长河中,科技与艺术的交融始终是推动文明进步的重要力
理中丸:温中祛寒,益气健脾的经典方剂
游泳新手必看:装备全攻略,轻松下水不迷茫!
买房后如何办理户口迁移?详细步骤和所需材料
NBA全明星赛战报:奥尼尔队夺冠 库里两夺MVP
杨再春:中国书法家协会创始人之一,影响深远的书法教育家
必看!夫妻年龄差,研究揭秘影响婚姻质量真相!
如何制作一个吸引人的意见本封面?
“友善校园”公益项目:与校园欺凌的15年拉锯战
连续3场进球!曼联废柴在贝蒂斯展翅高飞 难道真是梦剧场风水有问题?
16种“飞天”中药材种子在河南中医药大学完成交接
证据收集的正确方法是什么
人事行政岗位面试常见问题及回答技巧
【观察】利物浦变成“耐考王”,斯洛特能否带队夺冠?
53同步单元测试卷如何:准确评估学生理解、提升教学质量、鼓励自主学习
陈皮与生普洱茶的完美搭配:从泡饮技巧到健康功效
如何使用AI提问提示词(Prompt):让你的提问回答更有效
理解减法的含义-素养教案一年级数学人教版
跟着《黑神话:悟空》,体会悬空寺等山西古建之美
心理咨询师证书的考试内容包括哪些方面?
细说降糖药——西格列他钠
2025,命运或许无法掌控,但生活可以选择
磁生电现象:揭秘电磁感应的神秘力量
解密智慧国土空间规划:从CIM到TIM的创新之路
揭秘生活中的小确幸,治愈每一个不安!
郭兰萍:为中药种植开“生态药方”
你不来,谁能将山川染绿——走进文人笔下的雨水节气
日本流感现状如何?赴日游客的流感应对措施,一文了解
奥运会:马龙开门红!樊振东逆转、王楚钦稳定,国乒男团晋级8强